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Control, estimation and optimization topics

Optimal control theory - learn to redirect dynamics to desired ends

Analytic solutions to OCT problems

Algorithms for numerical optimization: stochastic and deterministic

Controllability

Observability

Estimation methods - likelihood-based, Bayesian; estimation algorithms:
assess statistical error and incorporate

Optimal feedback control: Hamilton-Jacobi-Bellman equations and dynamic
programming

Time permitting: model uncertainty
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Numerical methods covered in HW exercises

Learn how to computationally optimize chemical, mechanical, electrical or
molecular objective functions

Genetic and evolutionary optimization

Multiobjective optimization

Constrained optimization (Newton-Raphson)

Runge-Kutta ODE integration

Markov Chain Monte Carlo numerical integration (MCMC)

Self-consistent iterative algorithms

Controllability and observability assessment

Some of the codes you write may be run in high performance parallel format to
accelerate your research
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Extending control engineering to the micro, submicro and
nanodomains

In addition to generic engineering applications of optimization and control
methods,

Introductory molecular quantum mechanics and quantum chemistry

Atomic and molecular optimal control

Laser control of reactive chemistry

Optimal design of quantum computers (quantum dots, nuclear spins, etc)

Optimal design and control for coherent quantum transport: exciton control
for photovoltaics (nanosolar cells)

Optimal control of semiconductor optical switching

See distributed handouts for details

This semester’s course will be basis for molecular optimal control book by
Chakrabarti and Rabitz, Taylor and Francis, 2011: be a part of the
development

New course: register for blackboard access to all course materials and
application areas
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Types of control systems

We will be concerned only with first-order systems, i.e., where the dynamics of the
state evolution are specified by a system of first-order ordinary differential
equations (ODEs). In optimal control, these are called the dynamical equations of
the variational system.

Linear control system

A linear control system is one that is linear in the control and the state; it has the
general form

dx

dt
= Ax(t) + Bu(t)

where A is a n × n matrix, B is an n ×m matrix, x is the n-component state
vector and u is a m component vector of controls. A,B and x may be either real
or complex; u must be real.



Bilinear control systems

Bilinear control system

A bilinear control system is one that is linear in both the control and the state,
and where the control and state enter multiplicatively; it has the general form

dx

dt
=

[
A +

∑
i

Biui (t)

]
x(t)

where each Bi is a n × n matrix and u = (u1, · · · , um) is the m component vector
of controls.

For linear and bilinear control systems, the term Ax(t) is referred to as the drift of
the control system, since it specifies how the system evolves when the control is
turned off. (For bilinear systems in physics, A is sometimes referred to as the drift
Hamiltonian, and Bi as the control Hamiltonians).
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Nonlinear control systems

Nonlinear control system

A nonlinear control system is nonlinear in either the control, the state, or both; it
cannot be expressed in either form above and has the general form

dx

dt
= f (x(t), u(t)).
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Hilbert space: discrete systems

For discrete systems, the Hilbert space H is an N-dimensional complex (normed)
vector space on which linear operators act and the quantum state ψ resides. It is
endowed with the Hilbert-Schmidt norm, i.e., |ψ|2 = ψ†ψ for the length of a
vector, where † (“adjoint”) denotes the conjugate transpose.

As with any vector space, we need to choose a basis

Example: spin of a nucleus of electron; observed as either up or down (two
possible states); Hilbert space is denoted H2; basis vectors are denoted
|0〉, |1〉
We can also have linear operators acting on this complex vector space; these
are complex N × N matrices; the space of operators is denoted B(HN)
(bounded operators on Hilbert space).

Most of the examples in this course will be discrete systems.
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Continuous systems

For continuous systems, the outcome of an observation can take on an infinite
number of values. These systems are said to have a continuous spectrum. The
Hilbert space is an (infinite-dimensional) function space H∞.

The basis is infinite dimensional: a continuous variable

Example of a continuous variable: position (or momentum) of an electron in
the Hydrogen atom ψ = ψ(x , y , z)

The Hilbert-Schmidt (L2) norm is

|ψ|2 =

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

ψ∗(x , y , z)ψ(x , y , z) dx dy dz
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Dirac “bra-ket” notation

The “bra-ket” notation is a shorthand for representing vectors and inner
products in a Hilbert space

A state vector ψ = (ψ1, · · · , ψN) (column vector) is also called a “ket”, and
is denoted |ψ〉
The conjugate transpose (ψ† = (ψ∗1 , · · · , ψ∗N)T , a row vector) of a state
vector is called a “bra” and is denoted 〈ψ|
The inner product ψ†ψ (

∫∞
−∞ ψ∗(x)ψ(x) dx for infinite-dimensional Hilbert

space) is denoted 〈ψ|ψ〉
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Pure states

On a discrete Hilbert space, the quantum state is written
|ψ〉 =

∑
i civi , vi ∈ CN , ci ∈ C, v†i vj = δij or

|ψ〉 =
∑
i

ci |i〉

Additional constraint on the state: pi = |ci |2 = cic
∗
i ,
∑

i pi = 1; the state
vector must lie on the complex sphere

Choice of basis is arbitrary; same state can be observed from different bases.
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Time evolution: the Schrödinger equation

Schrödinger equation

The Schrödinger equation is a first-order linear ODE that specifies the evolution of
the quantum state with time:

dψ(t)

dt
= − i

~
H(t)ψ(t), ψ(0) = ψ0,

where H is a Hermitian matrix called the Hamiltonian matrix. It can itself be a
function of time; if so, the energy of the quantum system is not conserved and
changes with time.

Prof. Raj Chakrabarti CHE 597: Introduction to Quantum Control Engineering May 14, 2014 15 / 334



Superposition of states

Since the Schrödinger equation is a linear differential equation, if
(eigenfunctions) |ψ1(t)〉, · · · |ψN(t)〉 are solutions, so is any linear
combination

∑
i ci |ψi (t)〉 of them; alternatively may write

∑
i ci (t)|i〉 using

an arbitrary orthonormal basis for the Hilbert space

The coefficients c1, · · · , cN (generally functions of time) are determined by
the boundary conditions of the problem
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Time-ordered matrix exponential

The formal solution to the time-dependent Schrödinger equation is

ψ(T ) = ψ(0)− i

~

∫ T

0

H(t)ψ(t)dt = T exp

(
− i

~

∫ T

0

H(t)dt

)
ψ(0),

where T denotes the time-ordering operator. Discretizing the time t as
t0, · · · , tk = T , we may write the time-ordered matrix exponential as

ψ(T ) ≈ exp(− i

~
H(tk−1)∆t) · · · exp(− i

~
H(t1)∆t) exp(− i

~
H(t0)∆t)ψ(0).
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Unitary propagator

Note that U = exp(iA), where A = A†, is a unitary matrix; i.e., U†U = IN .
(See math review notes to be posted on Lie groups; we will study these in
detail in later lecture). Thus each term exp(− i

~H(tk−1)∆t) in the product
above is unitary and the product itself is also unitary.

So we may write the formal solution ψ(t) = U(t)ψ(0), where

U(t) = T exp
(
− i

~
∫ T

0
H(t)dt

)
. U(t) is called the unitary propagator of the

quantum system. Inserting this into the Schrödinger equation, we obtain an
(equivalent) ODE for the unitary propagator,

d

dt
U(t) = − i

~
H(t)U(t), U(0) = U0,
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Matrix exponentiation by eigenvector decomposition

The time-ordered exponential requires computation of exp(− i
~H(ti )) at each

time step

A simple method for computing this matrix exponential is to diagonalize
H(ti ) = U(ti )D(ti )U†(ti ) and use the formula
exp(U(ti )D(ti )U†(ti )) = U(ti ) exp(D(ti ))U†(ti )

We have exp(D(ti )) = diag (exp(h1), · · · , exp(h1)).
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Numerical integration of ODE’s

We know how to integrate (solve) simple systems of 1st order ODE’s using
the Laplace transform method. This will be discussed later in the course.

The Schrödinger equation is a system of 1st order ODE’s with constraints on
the variables, which does not typically have constant coefficients

The Schrödinger equation cannot typically be integrated analytically

We will thus review methods for numerical integration of ODE’s (initial value
problems)
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Numerical integration of ODE’s: Runge-Kutta

Consider the initial value problem dy(x)
dx = f (x , y), y(0) = y0

Euler’s method for integrating this ODE uses the step
yn+1 = yn + f (xn, yn)∆x

Euler’s method is accurate to 1st order, i.e., the error is O[(∆x)2]

Can achieve 2nd order accuracy (O[(∆x)2] error) through the step:

k1 = f (xn + ∆x/2, yn)

k2 = f (xn + ∆x/2, yn + k1∆x/2)

yn+1 = yn + k2∆x

which uses the derivative at the midpoint of the step rather than its
beginning.

In the homework we will prove that this step is accurate to 2nd order; it is
called the 2nd-order Runge-Kutta integrator.
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Numerical integration of ODE’s: Runge-Kutta (cont’d)

Most common approach is to achieve 4th-order accuracy using the 4th-order
Runge-Kutta integrator (RK4):

k1 = f (xn, yn)

k2 = f (xn + ∆x/2, yn)

k3 = f (xn + ∆x/2, yn + k2∆x/2)

k4 = f (xn + ∆x , yn + k3∆x)

yn+1 = yn + ∆xk1/6 + ∆xk2/3 + ∆xk3/3 + ∆xk4 +O{(∆x)5}

which uses two derivative evaluations at the midpoint, and two at the start
and end of the interval, respectively.

An adaptive stepsize improves accuracy further: compare accuracy for
stepsizes ∆x and ∆x/2; scale the step accordingly.

Prof. Raj Chakrabarti CHE 597: Introduction to Quantum Control Engineering May 14, 2014 22 / 334



Observables

Any observable (position, momentum, spin, energy) in quantum mechanics is
represented by a Hermitian linear operator Θ that operates on the Hilbert
space HN . Any such observable has real eigenvalues:

Θ̃ = S†ΘS = diag(λ1, · · · , λN)

Measurement outcome: one of λ1, · · · , λN - the measured quantity is an
eigenvalue λk of Θ.

The expectation value of an observable operator for system in state |ψ〉 is
then given by ∑

k

λk |ck |2 = 〈ψ|Θ|ψ〉

for a pure state.

Example: The expectation value of the energy of a quantum system in pure
state |ψ(t)〉 is 〈ψ(t)|H|ψ(t)〉. The possible observed values of the energy are
the eigenvalues of H.

For a mixed state ρ, the expectation value of observable Θ is Tr(ρΘ) (Born
rule)



Quantum measurements

Any measurement in quantum mechanics is associated with a choice of
eigenbasis in which ρ and its associated physical properties can be
“examined”.

Measurement basis V :

V = {v1, · · · , vN}, vi ∈ CN ,

vi · vj = v†i vj ≡ 〈vi |vj〉 = δij , ∀i , j .

The outcome of any selective (effectively instantaneous) measurement is one
of N possible discrete alternatives, corresponding to eigenvectors of that
basis. After such a measurement the state vector jumps to that eigenvector
(momentarily, the quantum uncertainty is eliminated).

Thus, the probability distribution associated with a given measurement is a
multinomial distribution.

Although a given measurement basis is associated with a “class” of possible
observations, distinct observations can be made within every such class, these
correspond to the observables that are diagonal in that basis.



Heisenberg picture / equation of motion

The Heisenberg picture of time evolution of observable expectation values
places the time-dependence in the observable operator rather than the state.

In the Heisenberg picture, Θ(t) = U†(t)ΘU(t) is called the time-evolved Θ
(observable) operator.

Then we have the following equivalence between the Schrödinger and
Heisenberg pictures:
〈ψ(t)|Θ|ψ(t)〉 = 〈U(t)ψ|Θ|U(t)ψ〉 = 〈ψ|U†(t)ΘU(t)|ψ〉 = 〈ψ|Θ(t)|ψ〉.
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Mixed states: density matrix

The density matrix is the most general description of the state of a quantum
system. It represents a probability distribution over pure states, either due to a
statistical ensemble of like particles or due to uncertainty in the state of a single
particle.Properties:

1 ρ is an NxN Hermitian matrix (i.e., ρ = ρ†)

2 ρ ≥ 0

3 Tr(ρ) = 1

Note: off-diagonal elements can be complex and of arbitrary modulus, but
diagonal elements are real and bounded in magnitude.
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Mixed states: density matrix

Different “classes” of quantum states can be conveniently described by
diagonalizing ρ through appropriate choice of basis (i.e., eigenvectors) and
inspection of its eigenvalues: ρ̃ = R†ρR, where R is a unitary matrix of
eigenvectors in which ρ is diagonal.

A mixed state ρ has more than one nonzero eigenvalue; it is a statistical
mixture of pure states. It has the general form:
ρ̃mixed = R†ρmixedR = diag(γ1, · · · , γN)
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Density matrix for pure states

For pure states, ρ has only one nonzero eigenvalue (which must be 1)

So ρ can be written as a tensor (outer) product of vectors |ψ〉〈ψ|, where |ψ〉
is the wavefunction for the state (a ray in Hilbert space with unit norm)

ρ̃pure = diag(γ1, 0, · · · , 0).
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von Neumann equation

The von Neumann equation for the time evolution of a mixed state can in
turn be easily derived from the Schrödinger equation for the unitary
propagator:

d

dt
ρ(t) = − i

~
[H(t), ρ(t)], ρ(0) = ρ0, (1)

where [, ] denotes the commutator.

Note that because of unitary evolution, the eigenvalues of ρ do not change
with time; in particular, a pure state remains pure
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Algorithms for MLE estimation

20 Optimal feedback control
Feedback control of time-invariant linear systems

Kalman gain

Lyapunov equations
Riccati equations
Analytic solution to algebraic Riccati equation

Dynamic programming
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Further details on stochastic processes
From deterministic to stochastic control
Stochastic optimal control without filtering

Linear stochastic optimal control (without filtering)

Stochastic optimal control with filtering
Linear stochastic optimal control with filtering
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The position observable operator

Let |ψ〉 = |ψ(x , y , z)〉, i.e. the Hilbert space is H∞ 〈x0|ψ〉 = ψ(x0) ≡ cx0 is a
function of x

The probability of finding the particle at position x0 is∫ ∞
−∞

∫ ∞
−∞

ψ(x0, y , z)ψ∗(x0, y , z) dy dz

Whereas the expectation value of x is

〈x〉 = 〈ψ(x , y , z)|x |ψ(x , y , z)〉

=

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

xψ(x , y , z)ψ∗(x , y , z) dx dy dz

The position operator thus corresponds to multiplication by x

Prof. Raj Chakrabarti CHE 597: Introduction to Quantum Control Engineering May 14, 2014 31 / 334



The momentum observable operator

The momentum operator corresponds to differentiation with respect to x
(within a constant factor)

〈px〉 = 〈ψ(x , y , z)| − i~
∂

∂x
|ψ(x , y , z)〉

= −i~
∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

ψ∗(x , y , z)
∂ψ(x , y , z)

∂x
dx dy dz

Note that the state vector ψ may be expressed in various possible bases
(representations); in particular ψ(x) (in the position representation) may be
transformed into the momentum representation through the Fourier
transform |ψ(px)〉 = 1√

2π~

∫∞
−∞ exp( i

~pxx)ψ(x) dx

ψ(x) =
1√
2π~

∫
dp exp

(
ipx

~

)
ψ(p)

ψ(p) =
1√
2π~

∫
dx exp

(
−ixp

~

)
ψ(x)
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The Schrödinger wave partial differential equation

On HN , we have H|ψ〉 = E |ψ〉, where H = H† is a Hermitian matrix of order
N, for the eigenvalue problem
Recall from last lecture: for constant H(t) = H, we have
d
dt |ψ(t)〉 = − i

~H|ψ(t)〉 and

|ψ(t)〉 = exp

 −
i
~E1t 0

. . .

0 − i
~ENt

 |ψ(0)〉 (2)

as the solution to the time-dependent Schrödinger equation, where
|ψ(0)〉 = |1〉, · · · , |N〉, where |i〉 denotes an eigenvector of H with eigenvalue
Ei .
On H∞, we have

∂

∂t
ψ(x , y , z , t) = − i

~
H(x , y , z)ψ(x , y , z , t)

as the eigenvalue problem, where H(x , y , z) is a operator on the function
space (consists of linear derivative and multiplication operations on the
function ψ(x , y , z))
This is a pde and is called the Schrödinger wave equation for reasons that
will become apparent



Separation of variables and solving the eigenvalue problem
over spatial variables

Recall we can generally write the solution to the time-dependent Schrödinger
equation on HN as |ψ(t)〉 =

∑
i ci (t)|i〉, i.e., as an expansion on a basis for

the Hilbert space

For time-independent problems on H∞, spatial and time variables are
separated and |ψ(x , y , z , t)〉 (called wavefunction) can be written in product
form ψ(x , y , z , t) = ψ1(x , y , z)ψ2(t)

The eigenfunctions of the Hamiltonian operator (now includes partial spatial
derivatives) take the place of the eigenvectors of the Hamiltonian matrix
described in the previous lecture

We will consider several examples of these eigenvalue problems and show how
to solve for eigenfunctions of H(x , y , z); this involves solving boundary value
problems over space



The time-independent Schrödinger equation for a particle
in space

The kinetic energy of a single particle is K = 1
2m (p2

x + p2
y + p2

z ); upon
quantization, we get

〈K 〉 = 〈ψ| − ~2

2m
(
∂2

∂x2
+

∂2

∂y 2
+

∂2

∂z2
)|ψ〉

The Laplacian operator ∇2 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 .

Free particle in space: H(x , y , z) = − ~2

2m∇
2; so the Schrödinger equation is

− ~2

2m
∇2ψ(x , y , z) = Eψ(x , y , z)

or (− ~2

2m∇
2 − E )ψ(x , y , z) = 0

Solutions are (unnormalized) plane waves:

ψ(x , y , z) = exp

[
i

~
(pxx + pyy + pzz)

]
with momentum |p| = (p2

x + p2
y + p2

z )1/2 =
√

2mE
~ and E > 0
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Adding a potential energy: the time-independent
Schrödinger equation for a particle in a box

H(x , y , z), representing the total energy function for the system, can be
subdivided into (quantized) kinetic and potential energy functions.

Now add potential energy function V (x) to Hamiltonian:

H(x) = − ~2

2m
∇2 + V (x)

Consider a particle-in-a-box with infinite height walls

V (x) =

 0, 0 ≤ x ≤ L
∞, x < 0,
∞, x > L
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Example: particle-in-a-box (cont)

Schrödinger equation: − ~2

2m
d2

dx2ψ(x) = (E − V )ψ(x)

Solve for the eigenstates (energy levels) and eigenvalues (energies) of the
time-independent Hamiltonian

Second-order homogeneous ordinary differential equation with constant
coefficients (standard form y ′′ + a(x)y ′ + b(x)y = 0, with
a(x) = a, b(x) = b); y = c exp(sx)

Auxiliary equation s2 + as + b = 0, solve for s; general solution is linear
combination of independent functions
y1(x) = c1 exp(s1x), y2(x) = c2 exp(s2x), i.e. c1 exp(s1x) + c2 exp(s2x)

solve for c1, c2 using boundary conditions (boundary value problem)
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Example: particle-in-a-box (cont)

If E − VI < 0, bound states

ψ(x) = 0 in regions I,III since − ~2

2m
d2

dx2ψ(x) = (E −∞)ψ(x)

Solution is exp
[
i ±
√

2mE
~ x

]
in region II since − ~2

2m
d2

dx2ψ(x) = Eψ(x)

ψII = c1 exp(i
√

2mE
~ ) + c2 exp(−i

√
2mE
~ ); substituting

exp(iθ) = cos(θ) + i sin(θ) (Euler’s formula), get

ψ = (c1 + c2) cos(θ) + (ic1 + ic2) sin(θ), θ =
√

2mE
~ x

Determine 4 constants (real, imaginary parts of c1, c2) and eigenvalue
condition on E from boundary conditions and normalization condition

Continuity of wavefunction: ψI (0) = ψII (0), ψII (L) = ψIII (L)
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Example: particle-in-a-box (cont)

Continuity provides two boundary conditions; obtain one coefficient from
x = 0 boundary condition... 0 = (c1 + c2) cos(θ) + (ic1 − ic2) sin(θ);
A ≡ c1 + c2, B ≡ i(c1 − c2); A = 0

And quantization of E follows from matching of x = L boundary condition:

B sin(
√

2mE
~ L) = 0 ⇒

√
2mE
~ L = nπ or E = n2π2~2

L2m = n2h2

8L2m , n = 1, 2, · · ·
(n = 0 not allowed since no particle if ψ = 0); solutions are waves of
wavelength 2L

n (n is called quantum number); hence quantization occurs for
bound infinite-d systems in qm

ψn(x) =

√
2

L
sin

(√
2mEn

~
x

)
with En = n2π2~2

L2m = n2h2

8L2m , n = 1, 2, · · ·
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Example: particle-in-a-box (cont)

Solve for B using normalization constraint:∫ L

0
ψ∗(x)ψ(x) dx = BB∗

∫ L

0
sin2( nπx

L ) dx = 1; integral of sin2 y is
y
2 −

1
4 sin(2y); ⇒ B =

√
2
L

ψ is unspecified within a global phase, i.e., ψ ⇒ ψ exp(iφ) still satisfies
normalization and leaves probability density |ψ|2 unchanged; choose φ = 0

ψ1(x) is said to be the ground state, while ψm(x) is said to be the m − 1-th
excited state.

In HW, will consider finite height walls: if E − V > 0, free states as above
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Example: the quantum harmonic oscillator

Place the particle in a quadratic potential with spring constant k:
V (x) = 1

2 kx2

The total time-independent Hamiltonian is then

H(x) = K + V (x) = − ~2

2m
∇2 +

1

2
kx2

The time-independent Schrödinger equation is

− ~2

2m

d2ψ(x)

dx2
+

1

2
kx2ψ(x) = Eψ(x)
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The quantum harmonic oscillator (cont’d)

Eigenstates of the Hamiltonian observable operator are the possible
(observed) energies of the system; note no longer have ode with constant
coefficients

Solving for the eigenfunctions and eigenvalues of H, we find the system has a
discrete spectrum of energies E1,E2, · · · ; there are a countably infinite
number of energy eigenstates

Solutions are Hermite polynomials (see HW exercise)

Eigenvalues are E = (ν + 1
2 )~ω0, where ν are vibrational quantum numbers

and ω0 = ( k
m )1/2
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Vibration of diatomic molecules

We will be interested in the dissociation of molecules by EM radiation (light)

Diatomics vibrate around equilibrium internuclear distance with a frequency
that depends on interaction energy between nuclei

For a diatomic molecule, let m = m1m2

m1+m2
denote the reduced mass of the

molecule

To model the interaction energy between nuclei in a diatomic molecule, make
Born-Oppenheimer approximation: electrons instantaneously reorient
themselves in response to nuclear motions

Thus a molecule in electronic ground state corresponding to internuclear
distance r stays in the electronic ground state for internuclear distance r ′

Potential energy of interaction: V (r) = −E1(r) + Z1Z2e
2

r

Taylor expand V (r) around equilibrium distance r0 (min
r

V (r) = V (r0)):

V (r) ≈ −V0 +
1

2

d2V

dr 2
(r − r0)2 + · · ·

Harmonic approximation: truncate Taylor series at second order; also move
origin to r0 = 0



Bound and scattering states: the harmonic oscillator

Energies are Eν = −V0 + (ν + 1
2 )~νe

It is possible to truncate the infinite-dimensional Hilbert space H∞ (of a
harmonic oscillator) into a finite-dimensional Hilbert space HN

Bound states have Eν ≤ 0; scattering states have Eν > 0

There are discrete and continuous parts to the spectrum of the Hamiltonian
H; scattering states comprise the continuous part

Anharmonic oscillator (includes higher order terms in V (r) Taylor series)
provides a better representation of dissociation (note V (r) cannot be convex
near dissociative bond length):

Eν = −V0 + (ν +
1

2
)~ω0 − (ν +

1

2
)2 ~2ω2

0

4V0

Dissociation occurs for Eν+1 − Eν < 0
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Wavepackets

Position and momentum eigenstates can be normalized by localizing them;
these are also called scattering states or wavepackets

Gaussian wavepacket (localized plane wave): ψ(x) = 1
π1/4
√
d

exp
[
ipxx − x2

2d2

]
(sinusoidal wave with Gaussian envelope that localizes particle) where d is
the width (std dev)

In the homework, you will transform the above wavepacket between the
position and momentum representations and compute various expectation
values
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Representation of bound states of the harmonic oscillator

Recall there are a finite number of bound states for the harmonic oscillator;
let N denote the number of bound states; then neglecting the scattering
states, the Hilbert space of vibrational states is HN - it is finite dimensional

Denote by |i〉 the i-th eigenfunction (energy level, function of interatomic
distance r) of the Hamiltonian operator H0 for the harmonic oscillator

Then in this basis, the Hamiltonian can be represented as a order N matrix
diag(E1, · · · ,EN); moreover the Hermitian operator H0 can be expressed in
any other eigenbasis through the rotation U†H0U

Now consider a gas of diatomic molecules at temperature T ; how to
represent the vibrational states of molecules in the gas?
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Mixed states: density matrix

The density matrix is the most general description of the state of a quantum
system. It represents a probability distribution over pure states, either due to a
statistical ensemble of like particles or due to uncertainty in the state of a single
particle.Properties:

1 ρ is an NxN Hermitian matrix (i.e., ρ = ρ†)

2 ρ ≥ 0

3 Tr(ρ) = 1

Note: off-diagonal elements can be complex and of arbitrary modulus, but
diagonal elements are real and bounded in magnitude.
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Mixed states: density matrix

Different “classes” of quantum states can be conveniently described by
diagonalizing ρ through appropriate choice of basis (i.e., eigenvectors) and
inspection of its eigenvalues: ρ̃ = R†ρR, where R is a unitary matrix of
eigenvectors in which ρ is diagonal.

A mixed state ρ has more than one nonzero eigenvalue; it is a statistical
mixture of pure states. It has the general form:
ρ̃mixed = R†ρmixedR = diag(γ1, · · · , γN)
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Density matrix for pure states

For pure states, ρ has only one nonzero eigenvalue (which must be 1)

So ρ can be written as a tensor (outer) product of vectors |ψ〉〈ψ|, where |ψ〉
is the wavefunction for the state (a ray in Hilbert space with unit norm)

ρ̃pure = diag(γ1, 0, · · · , 0).
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The thermal density matrix

The Boltzmann distribution of energies of a system at temperature T has

probability density function pi = exp(−Ei/kT )∑N
j=1 exp(−Ej/kT )

where k is Boltzmann’s

constant for energy eigenstate i

The Boltzmann distribution for an ensemble of quantum systems can be
represented in the form of a mixed state density matrix, where the thermal
and quantum uncertainty become inseparable.

The pi are then the eigenvalues of ρ; ρ is diagonal in the basis of the
Hamiltonian operator H

ρ̃ = diag (p1, · · · , pN)

The off-diagonal elements ρij , which are complex and cannot be interpreted
as probabilities, are called phase coherences
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von Neumann equation

The von Neumann equation for the time evolution of a mixed state can in
turn be easily derived from the Schrödinger equation for the unitary
propagator:

d

dt
ρ(t) = − i

~
[H(t), ρ(t)], ρ(0) = ρ0, (3)

where [, ] denotes the commutator.

Note that because of unitary evolution, the eigenvalues of ρ do not change
with time; in particular, a pure state remains pure
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Angular momentum

Classical angular momentum: L = rxp

Quantum angular momentum: quantize by replacing r,p by their quantum
operator analogs:

Lx = −i~(y
∂

∂z
− z

∂

∂y
),

etc.

To solve for eigenfunctions, necessary to switch to spherical coordinates;
expression for Laplacian complicated, will not study

Eigenvalues of |L|2 are ~2l(l + 1); of Lz are ~m, where −l ≤ m ≤ l (can only
simultaneously measure two)

(will discuss spin in next lect)
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The rotational Schrödinger equation

Analogy to the rigid rotor with moment of inertia I

Rigid rotor: eigenfunctions are spherical harmonics Y m
J (θ, φ); energy

eigenvalues are E = J(J+1)~2

2I , where I = md2 is the moment of inertia of the
diatomic, and d is the equilibrium (?) bond length

Rotational quantum numbers are denoted J; eigenfunctions will be provided
in the homework; these are universal do not depend on any potential.
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Tensor products of Hilbert spaces: vectors

The tensor product (or direct product) of Hilbert spaces is denoted H1 ⊗H2;
its dimension is m1m2, where m1,m2 are the dimensions of H1,H2,
respectively (since there are m1m2 possible joint states)

Consider the matrix representation of a vector in this product space: it is
denoted |ψ〉 ⊗ |φ〉, where ⊗ now refers to the vector Kronecker product

Let |ψi 〉 (i = 1, · · · ,m) denote the basis vectors of |ψ〉 and |φj〉
(j = 1, · · · , n) denote those of |φ〉. The Kronecker product of column vectors
|ψ〉, |φ〉 has as basis vectors |(ψ ⊗ φ)mi+j〉 = |ψi , φj〉. (Note this is different
from the outer (tensor) product of the vectors.)
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Tensor products of Hilbert spaces: operators

The same principle holds for tensor products of the sets of operators acting
on H1, H2 (i.e., B(H1), B(H2))

The Kronecker product of (order mxm, nxn) matrices A,B, denoted
A⊗ B ≡ C , has the form  a11B · · · a1mB

...
. . .

am1B · · · ammB


In particular, an operator A in B(H1) has representation A⊗ In (Kronecker
product) on H1 ⊗H2 (direct product)

One may also have tensor products of finite-dimensional and
infinite-dimensional Hilbert spaces (see spin lecture)
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The rovibronic Schrödinger equation

Putting it together: for a separable Hamiltonian, such as HT = HV ⊗ HR , we
have the tensor product of Hilbert spaces HT = HV ⊗HR

For representation of the bound eigenstates of HT use the Kronecker product
of wavefunctions ψT = ψV ⊗ ψR

For representation of an arbitrary wavefunction use scalar product form
ψV = ψV (r); ψR = ψR(θ, φ) ; i.e., the wavefunction for the diatomic
molecule can be written as the product of the rotational and vibrational
wavefunctions
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Consider the ode
d

dt
ψ(t) = − i

~
(H0 − µ · ε(t))ψ(t),

with H0, µ Hermitian; for example, let ψ(0) = |ν = 0〉 be the ground
vibrational state of a diatomic molecule (at low T )

This may be viewed as a bilinear control system dx
dt = (Ax(t) + Bu(t))x(t)

with x(t) = ψ(t), A = − i
~H0, B = i

~µ, and u(t) = ε(t)

We will show that this describes molecular interaction with the electric field
of light (electromagnetic radiation); thus prepare for the study of quantum
optimal control, which can be used to drive the system to a final target state
ψ(T ) by choice of ε(t)
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Representation of the field

Consider electric field of electromagnetic wave traveling in z-direction
composed of superposition of modes with frequency ω:

ε(t − x/c) = <
{∫∞
−∞ A(ω) exp(iφ(ω)) exp[iω(t − x/c)] dω

}
This is Fourier transform of the field in the frequency domain into the time
domain; A(ω) is complex electric field amplitude in the frequency domain

We can impose the requirement that ε(t) is real directly in the Fourier
expansion; for φ(ω) = 0,

ε(t − x/c) =
{∫∞
−∞ A(ω) exp(iφ(ω)) exp[iω(t − x/c) dω

}
with

A∗(ω) = A(−ω); then A(ω) exp[iω(t − z/c)] + A(−ω) exp[−iω(t − x/c)] =
A(ω)(cosωt + i sinωt) + A∗(ω)(cosωt − i sinωt), which is real

Field is polarized: ε vector points only along z-axis
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Wavelength of highest frequency (UV) light c/ω ≈ 103 angstroms, whereas
molecular dimensions are single angstroms; hence ωx/c much larger than
molecule and we approximate

ε(t − x/c) = <
{∫ ∞
−∞

A(ω) exp(iφ(ω)) exp(iωt − iωx/c) dω

}
ε(t) ≈ <

{∫ ∞
−∞

A(ω) exp(iφ(ω)) exp(iωt) dω

}
Most QC processes are sensitive to phase; phase-only shaping (fixed A(ω))
typically sufficient for attaining optimal control

A(ω) typically Gaussian:

<[A(ω)] =
1√
2πσ

exp[−(ω − ω0)2/σ2];

σ is called bandwidth of pulse

Sometime also use envelope or shape function (Gaussian is standard nonlinear
chirp): s(t) = sin2(πt/T ) or 1√

2πσ
exp[−(t − t0)2/σ2] so

ε(t) = s(t)<
{∫ ∞
−∞

A(ω) exp(iφ(ω)) exp(iωt) dω

}



Representation of the field (cont)

In frequency domain, have spectral phases φ(ω): ε(ω) = A(ω) exp(iφ(ω))
where A(ω) is the complex spectral amplitude

In time domain, have temporal phases Φ(t): ε(t) = A(t) exp(iΦ(t)) where
A(t) is the complex temporal amplitude

Total energy, total power or intensity of the field:∫∞
∞ |ε(t)|2 dt =

∫∞
∞ |ε(ω)|2 dω
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Properties of Fourier transforms

FT: ε(t) =
∫∞
−∞ exp(iωt)ε(ω) dω

Inverse FT: ε(ω) = 1
2π

∫∞
−∞ exp(−iωt)ε(t) dt

The Fourier power spectral density is the function |ε(ω)|2

Consider a discrete representation of the field (as required in numerical
simulations or processing of experimental data):

1 Denote smallest temporal feature in time domain: δt; overall temporal length
T

2 Denote smallest spectral features in frequency domain: δω; overall spectral
width B

3 Information cannot be created or destroyed in transform: δω · T = δt · B
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A molecule in an applied electromagnetic field

Consider a (diatomic) molecule in an electric field ~ε(x , y , z)

Classically, the energy of a system of charged particles in an electric field can
be approximated to first order as V = D · ~ε, where D =

∑n
i=1 qi ri , where ri

denotes the radial position vector for particle i , and where n denotes the
number of particles in the molecule

The dipole moment operator µ =
∑n

i=1 qi ri , where ri denotes the position
operator for that particle

There are in fact three components to the dipole moment operator: µx , µy ,
and µz
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A molecule in an applied electromagnetic field (cont)

The classical molecule-field interaction energy is (assume the field is polarized
along z-direction, and molecule is much smaller than wavelength of light):

V = ~ε(r, t) · ~D ≈ εz(t)Dz

For the following assume a field with only one Fourier mode with frequency ω

Thus the molecule-field interaction Hamiltonian then follows from
quantization of the classical approximation to the interaction energy V :
HI (t) = −A cos(ωt) · µ, where have let µ = µz

Application of the field results in a time-dependent probability of transition
Pij(t) between eigenstates |ψi 〉, |ψj〉 of the (unperturbed) time-independent
Hamiltonian H0; why?
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Example: a vibrating molecule in an external EM field

In the dipole approximation, the Schrödinger equation for a diatomic
vibrating molecule (no rotations) in an external EM field is:

i~
d

dt
ψ(r , t) = (H0(r)− µ(r) · ε(t))ψ(r , t)

=

(
− ~2

2m

d2

dr 2
+

1

2
kr 2 − µ(r) · ε(t)

)
ψ(r , t)

where m = m1m2

m1+m2
denotes the reduced mass of the molecule

As above, we may calculate the matrix elements of µ (now an N × N
Hermitian matrix) in the eigenbasis of H0

If H0, µ are both diagonal, let mi denote the i-th diagonal element of µ; then
we have

ψ(t + ∆t) ≈ exp

 −
i
~ (E1 −m1ε(t))∆t 0

. . .

0 − i
~ (ENε(t)mN)∆t

ψ(t),

i.e., the off-diagonal elements of µ are what allow the electric field to drive
transitions between states



Selection rules: computing matrix elements of the dipole
moment operator

In molecular spectroscopy, only certain direct transitions are possible due to
the application of an external field

Whether a transition is “forbidden” or “allowed” depends on matrix elements
of the dipole moment operator µ (forbidden: µij = 0)

Compute matrix elements µij = 〈ψi |µ|ψj〉 using the eigenstates ψi of H0

For the harmonic oscillator (transitions between diatomic vibrational states),
µ = µ(r); we have:

〈ψν(r)|µ(r)|ψν′(r)〉 = 0, ∀ν′ 6= ν ± 1

Consider the problem of exciting the molecule from the ground vibrational
state to the 1st excited vibrational state with a sinusoidal field: need matrix
elements 〈ν = 0|µ|ν = 1〉
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Selection rules: computing matrix elements of the dipole
moment operator (cont)

Thus the selection rule is ∆ν = ±1 and the dipole matrix looks lkie
µ11

µ21 µ22

0 µ32 µ33

...
...

...
. . .

0 0 · · · µN(N−1) µNN


where we have shown only the lower triangle of µ due to Hermiticity.

An important goal in quantum control is finding laser pulses that drive
transitions between molecular energy eigenstates; whether such transitions
are possible depend on the matrix elements of µ

We will derive several selection rules for vibrational and rotational transitions
in the homework

But control mechanisms can involve multistep level-level transitions
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Heisenberg picture / equation of motion

The Heisenberg picture of time evolution of observable expectation values
places the time-dependence in the observable operator rather than the state.

In the Heisenberg picture, Θ(t) = U†(t)ΘU(t) is called the time-evolved Θ
(observable) operator.

Then we have the following equivalence between the Schrödinger and
Heisenberg pictures:
〈ψ(t)|Θ|ψ(t)〉 = 〈U(t)ψ|Θ|U(t)ψ〉 = 〈ψ|U†(t)ΘU(t)|ψ〉 = 〈ψ|Θ(t)|ψ〉.
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The interaction picture

Let H(t) = H0 + H1(t) = H0 − µ · ε(t)

The interaction picture is like the Heisenberg picture but observables are
translated through time according to the evolution generated by only H0, not
the entire time-dependent Hamiltonian

Express H1(t) in a reference frame (basis) rotating with time:
HI (t) = exp( i

~H0t)H1(t) exp(− i
~H0t)

The state vector in this basis is |φ(t)〉 = exp( i
~H0t)|ψ(t)〉

Consider the time evolution of |φ(t)〉:

d

dt
|φ(t)〉 =

i

~
H0|φ(t)〉 − i

~
exp(

i

~
H0t)H(t)|ψ(t)〉

=
i

~
H0|φ(t)〉 − i

~
H0 exp(

i

~
H0t)|ψ(t)〉 − i

~
exp(

i

~
H0t)H1(t)|ψ(t)〉

=
i

~
H0|φ(t)〉 − i

~
H0|φ(t)〉 − i

~
exp(

i

~
H0t)H1(t)|ψ(t)〉

= − i

~
exp(

i

~
H0t)H1(t) exp(− i

~
H0t)|φ(t)〉

= − i

~
HI (t)|φ(t)〉



The interaction picture (cont’d)

Define UI (t) = T exp[− i
~
∫ t

0
HI (t ′)dt ′]; then

φ(t) = UI (t)|φ(0)〉

= exp(
i

~
H0t)|ψ(t)〉 = exp(

i

~
H0t)U(t)|ψ(0)〉

= exp(
i

~
H0t)U(t) exp(− i

~
H0t)|φ(0)〉

Consider the expression for the transition amplitude cji between energy
eigenstates |i〉, |j〉 of H0: cji = 〈j |U(t)|i〉
Compare to the expression for 〈j |UI (t)|i〉:

〈j |UI (t)|i〉 = 〈j | exp(
i

~
H0t)U(t) exp(− i

~
H0t)|i〉

= exp(
i

~
(Ej t − Ei t)〈j |U(t)|i〉

So the transition probability is |cji (t)|2 = |〈j |UI (t)|i〉|2
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Time-dependent perturbation theory

Perturbation theory, which seeks to compute the time evolution of ψ in the
presence of the applied field in terms of linear combinations of the
unperturbed wavefunctions by using a Taylor expansion of the ψ(t) in orders
of the interaction Hamiltonian strength λ, is typically used to compute the
transition probabilities in weak fields

Perturbation theory indicates that the optimal fields are resonant; recall from
spectroscopy that one studies the absorption and emission of characteristic
spectral frequencies corresponding to transitions between the energy levels
Ei ,Ej of a molecule

However, these solutions are approximate, and control theory is required to
compute the optimal fields. For analytical insight, we will begin with a study
of perturbation theory calculations of the transition probability

Perturbation theory is based on a series expansion for the unitary propagator;
can be used for various types of control systems
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Consider the formal solution for the unitary propagator, applied to the
interaction picture:

UI (t) = IN −
i

~

∫ t

0

HI (t ′)UI (t ′) dt ′

Instead of representing this as a matrix exponential, we may expand the
exponential in a series, which is equivalent to the following iterative
representation of UI (t):

UI (t) = IN −
i

~

∫ t

0

HI (t ′)UI (t ′) dt ′

= IN −
i

~

∫ t

0

HI (t ′)

[
IN −

i

~

∫ t′

0

HI (t ′′)UI (t ′′) dt ′′

]
dt ′

= IN −
i

~

∫ t

0

HI (t ′) dt ′ + (− i

~
)2

∫ t

0

∫ t′

0

HI (t ′)HI (t ′′) dt ′′dt ′ + · · ·+

(− i

~
)n
∫ t

0

∫ t′

0

· · ·
∫ tn−1

0

HI (t ′)HI (t ′′) · · ·HI (tn) dtn · · · dt ′ · · ·
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Perturbation theory and the Dyson expansion

The exact expression for the transition amplitude is cji (t) = 〈j |UI (t)|i〉; if
initial state is |i〉, cji (t) = cj(t)

To approximate it to arbitrary order, insert perturbation expansion for UI (t):

c1
ji (t) = −〈j |λ i

~

∫ t

0

HI (t ′) dt ′|i〉

...

cn
ji (t) = 〈j |(−λ i

~
)n
∫ t

0

· · ·
∫ tn−1

0

HI (t ′) · · ·HI (tn) dtn · · · dt ′|i〉

Then, the total transition probability between states i and j at time t in n-th
order perturbation theory is

|c1
ji (t) + c2

ji (t) + · · ·+ cn
ji (t)|2 =

[
c1
ji (t) + c2

ji (t) + · · ·+ cn
ji (t)

]∗
×
[
c1
ji (t) + c2

ji (t) + · · ·+ cn
ji (t)

]
(which demonstrates the property of quantum interference between paths due
to the presence of coherence terms (cx

ji (t))∗cy
ji (t))



Now use the Fourier series representation of the field:
ε(t) =

∫∞
−∞ dω A(ω) exp(iφ(ω)) exp(−iωt) and

HI (t) = exp( i
~H0t)[−µ · ε(t)] exp(− i

~H0t)

〈j |
∫ t

0
HI (t) dt|i〉 = −

∫ t

0
ε(t)〈j | exp( i

~H0t)µ exp(− i
~H0t)|i〉 dt

c1
ji (t) =

i

~
〈j |µ|i〉

∫ t

0

ε(t) exp(
i

~
(Ej − Ei )t)dt

=
i

~
〈j |µ|i〉

∫ ∞
−∞

dω A(ω) exp(iφ(ω))

∫ t

0

exp((
i

~
(Ej − Ei )− iω)t)dt

Let ωji ≡ Ej−Ei

~ and integrate, taking the long-time limit (t →∞). The
integral is easiest to compute in closed form if we set the initial time
t0 = −∞ and final time tf =∞. Then we can use∫∞
−∞ exp[i(ωji − ω)t ′] dt ′ = 2πδ(ωji − ω) and

c1
ji (∞) = 〈j |µ|i〉

∫ ∞
−∞

dω A(ω) exp(iφ(ω))2πδ(ωji − ω)
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Only the term where ω = ωji is nonzero contributes, so

c1
ji (∞) =

2πi

~
〈j |µ|i〉A(ωji ) exp(iφ(ωji ))

|c1
ji (∞)|2 =

4π2

~2
|〈j |µ|i〉|2|A(ωji )|2

In order to have a nonzero probability of transition in the asymptotic time
limit, resonance is required.

Note the state has obtained a phase from the field but the transition
probability does not depend on it; thus we are not using all information
contained in control to drive system to target state
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Branching ratio

Want to control branching ratio
|cji (∞)|2
|cki (∞)|2 between different final states of

molecule through tuning of field parameters (phases, amplitudes)

If initial quantum state is a single energy

eigenstate:
|cj (∞)|2
|ck (∞)|2 =

|A(ωji )|2|〈i|µ|j〉|2
|A(ωki )|2|〈i|µ|k〉|2 , which is independent of field phases

We need superposition of states or multiple pathways to achieve selective
control of branching ratios with phases. Multiple pathways not only arise, but
can interact; they are more prevalent for more intense fields
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Redo above analysis starting from
∑n

i=1 di |ψi 〉; obtain interference terms
between excitation pathways to |j〉 and |k〉; field parameters do not cancel in
these “off-diagonal” terms...

|cj(∞)|2 =

[
2π

i

~

n∑
i=1

A(ωji )〈i |µ|j〉 exp(iφ(ωji ))

]

×

[
2π

i

~

n∑
i=1

A(ωji )〈i |µ|j〉 exp(iφ(ωji ))

]∗

Note interference terms cjic
∗
jk

Note the multichromaticity of the laser field is important because each
transition pathway requires a corresponding field mode tuned to ωji

Quantum decoherence causes the superposition of states to decay into a
single energy eigenstate at any time t, preventing interference between
pathways and hence causing loss of control
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An analogous derivation follows starting from single energy eigenstate |i〉 but
using higher-order perturbation theory (more terms in Dyson expansion) to
compute cj

The same principle of constructive interference between paths that allows
coherent quantum control thus arises for multiphoton transitions

In second-order perturbation theory, obtain

c2
ji (t) =

(
− i

~

)2

〈i |µ2|j〉
∫ t

0

ε(t ′) exp

(
− i

~
(Ej − Ei )t ′

)
x∫ t′

0

ε(t ′′) exp

(
− i

~
(Ej − Ei )t ′′

)
dt ′′ dt ′

One-photon pathways: 1st-order perturbation theory; m-photon pathways:
mth-order perturbation theory

m-th order term in Dyson expansion contains contributions from all possible
m-photon paths (move above)

These are absent from the traditional picture of resonant absorption and
emission discussed above
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Questions addressed by quantum control theory

Main message: need multiparameter control to achieve optimal transfer of an
initial to a final state; need for multiple parameters increases with increasing
nonlinearity of control system

With adequate parameters (Fourier modes in control function), quantum
control enables us to approach theoretical limits in the manipulation of the
properties of chemical systems by optimal manipulation on the natural
dynamical time scales of molecular events

In later lecture, we will consider pulse shaping: φ(ω) defined at n frequencies
{ωj}nj=1 equally distributed across bandwidth of spectrum; these correspond
to n pixels of pulse shaper, are control parameters that are optimized

How to shape the field such that the probability of transition at a specified
time T is maximized?

The weak-field limit is not always susceptible to perturbation theory
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Objective functions for pure states

Quantum observable control

J1(ε(·)) = F1(ψT ) = 〈ψ|Θ|ψ〉, (4)

Quantum state control

J2(ε(·)) = F2(ψT ) = 〈ψf |ψ(T )〉 (5)

Cost F1 represents expectation value of observable Θ

Cost F2 represents fidelity with which target state ψf is achieved
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Objective functions on U(N)

Quantum observable control

J1(ε(·)) = F1(UT ) = Tr(UTρ0U†TΘ), (6)

Quantum gate control

J2(ε(·)) = F2(UT ) = ||W − UT ||2 (7)
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Bolza, Mayer and Lagrange type functionals

There are three primary types of optimal control cost functionals.

The most “general” are functionals of the Bolza type:

J[x(·), u(·)] = F (x(T )) +

∫ T

0

L(x(t), u(t)) dt,

If only the term
∫ T

0
L(x(t), u(t)) dt is present, the cost functional is said to

be of the Lagrange type.

If only the term F (x(T )) is present, the functional is said to be of the Mayer
type.
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The Lagrangian functional

The optimal control problem may be stated as

max
u(·)

J[x(·), u(·)] (8)

subject to the constraint of the dynamical differential equation.

Define a Lagrangian functional J̄ that directly imposes the constraint in the
dynamical equation:

J̄[ x(·), φ(·)] = F (x(T ))+∫ T

0

[
λL(x(t), u(t)) + 〈φ(t), f (x(t), u(t), t)− dx(t)

dt
〉
]

dt (9)
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First-order variation

Define the PMP-Hamiltonian function

H(x(t), φ(t), u(t)) = λL(x(t), u(t)) + 〈φ(t), f (x(t), u(t), t)〉

.

Expressing the Lagrangian in terms of H and integrating 〈φ(t), dx(t)
dt 〉 by

parts, we get

J̄ = F (x(T ))− 〈φ(T ), x(T )〉+ 〈φ(0), x(0)〉

+

∫ T

0

H(x(t), φ(t), u(t)) + 〈dφ(t)

dt
, x(t)〉 dt.

The first-order variation of this Lagrangian is

δJ̄ = 〈∇x(T )F (x(T ))− φ(T ), δx(T )〉+ 〈φ(0), δx(0)〉+

+

∫ T

0

〈∇x(t)H +
dφ(t)

dt
, δx(t)〉+∇u(t)H · δu(t) dt.

The corresponding first-order conditions (Euler-Lagrange equations) follow
from the requirement that δJ̄ = 0 for any δu, and hence for any δx(t).
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Euler-Lagrange equations 1,2

The first two E-L equations are

1 ∇x(t)H + dφ(t)
dt = 0,

2 ∇u(t)H = 0, 0 ≤ t ≤ T .
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Dynamical equation of the adjoint system

The first Euler-Lagrange equation can be expanded as

dφ(t)

dt
= −∇x(t)H

= −λ∇x(t)L(x(t), u(t))−∇x(t)〈φ(t), f (x(t), u(t)))〉,

which is referred to as the dynamical equation for the adjoint system.
We will write explicit forms of the E-L equations for linear and bilinear systems, in
turn.
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Dynamical equation of the adjoint system: linear control

For linear control systems, we can make the identification

∇x(t)(H− λL) = ATφ(t).

So, we have
dφ(t)

dt
= −λ

(
∇x(t)L

)
− ATφ(t)
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Boundary conditions for the 1st E-L equation

If the cost function is of Mayer or Bolza type (latter required for linear
systems), the 1st E-L eqn is associated with boundary condition

φ(T ) = ∇x(T )F (x(T )),

Note that the boundary conditions for the optimal control problem with
endpoint cost, specified in the variational and adjoint equations, are “split”
between the initial and final times; the costate φ(t) is propagated backwards
in time starting from φ(T ), whereas the “state” x(t) is propagated forward
in time starting from x(0).



Pontryagin Maximum Principle (PMP)

The Euler-Lagrange equations can be succinctly stated in terms of the Pontryagin
Maximum Principle.

For the class of problems considered above with fixed terminal time T , the
Pontryagin Maximum Principle is:

Theorem

(Pontryagin) An optimal control ū(·) that solves the control problem max J̄
satisfies ∂H

∂u(t) = 0 for a matrix φ(T ) = ∇x(T )F (x(T )) for Bolza or Mayer

functionals (otherwise unspecified for Lagrange functionals) and scalar λ where at
least one of φ(T ), λ is nonzero.

Prof. Raj Chakrabarti CHE 597: Introduction to Quantum Control Engineering May 14, 2014 89 / 334



Legendre conditions for optimality

Satisfaction of the first-order conditions following from the PMP is a necessary
but not sufficient condition for optimality of a control ε(·). So-called Legendre

conditions on the Hessian ∂2H
∂u(t)∂u(t′) , which depend on the type of cost, are also

required for optimality. These are discussed further in the next lecture.
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The second Euler-Lagrange equation: linear systems

For linear systems,

∇u(t)H = 0, 0 ≤ t ≤ T

= λ∇u(t)L(u(t)) + 〈B, φ(t)〉 = 0



PMP conditions for functionals: linear control

For linear control systems, the PMP demands that

∂HL

∂ui (t)
= λ

∂L(u(t))

∂ui (t)
+ 〈φ(t),~bi 〉 = 0, 0 ≤ t ≤ T ,

for cost functionals of the Lagrange type (~bi is i-th column of B).

For cost functionals of the Bolza type, we have

∂HB

∂ui (t)
= λ

∂L(u(t))

∂ui (t)
+ 〈φ(t),~bi 〉 = 0

for linear control systems, with the boundary condition
φ(T ) = ∇x(T )F (x(T )) on the costate imposed.

For cost functionals of the Mayer type, we have

∂HM

∂ui (t)
= 〈φ(t),~bi 〉 = 0

for linear control systems, with the boundary condition
φ(T ) = ∇x(T )F (x(T )) on the costate imposed.
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Solutions sets to Lagrange control problems

Denote the space of admissible controls ε(·) by K. Recall that the condition
for optimality of quantum controls for Lagrange costs (on U(N)) was

∂H

∂ε(t)
= λ

∂L(ε(t))

∂ε(t)
− i

~
Tr
(
U†(T )φ(T )U†(t)µU(t)

)
= 0, 0 ≤ t ≤ T

Imposition of an endpoint constraint on the state (for Lagrange functionals)
places restrictions on the matrix φ(T ) and hence restricts admissible optimal
controls to a subspace SL ⊂ K. A unique optimal control is then specified.
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Solutions sets to Mayer and Bolza control problems

For Bolza-type functionals, the PMP can explicitly specify a unique optimal
control ε̄(·) ∈ K in the absence of an endpoint constraint, since it may be
possible to solve for ε̄(·) when φ(T ) = ∇F (x(T )) 6= 0; a unique control is
specified there is a unique state that maximizes F (x).

For Mayer-type cost functionals, the PMP condition defines a submanifold
SM ⊂ K of codimension equal to the number of constraints present in the
condition ∇F (x(T )) = 0 (e.g., N2, N2 − 1, or 1 for unitary propagator,
density matrix or observable control, respectively).

We will focus on analytical solutions to OCT problems with Bolza costs or
Lagrange costs with a terminal constraint, because a unique optimal control exists
for these problems.
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Types of performance indices (Lagrange cost functions)

The type of Lagrange cost function plays an important role in determining the
solution strategy and characteristics of closed form optimal control solutions.

A linear cost function can be expressed in the general form
∫ T

0
cT x(t) dt

A quadratic cost function can be expressed in the general form
1
2

∫ T

0
xT (t)Qx(t) dt where Q is a (not necc positive-definite, but symmetric),

i.e., as a quadratic form.
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i.e., as a quadratic form.



Solving OCT problems

Solving optimal control problems in closed form is hard because one must not
only integrate systems of coupled differential equations but

The differential equations are expressed parametrically in terms of controls;
one must simultaneously solve for the optimal values of these parameters.

The solution to a control problem (either the parametric form of the controls
or the explicit function) is called the control law.
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General steps for solving OCT problems

1 Find the adjoint equations for the control system.

2 Express the control u(t) in terms of the state x(t) and the costate φ(t)

3 If the adjoint equations are uncoupled to the dynamical equations, a)
integrate them. Express undetermined integration constants in terms of
φ(T ). b) Insert this solution for φ(t) into the dynamical equations and solve.
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General steps for solving OCT problems (cont)

1 If the adjoint equations are coupled to the dynamical equations, solve the
system simultaneously (e.g., using Laplace transforms); again express
integration constants in terms of φ(T ) and the known initial conditions x(0).

2 If the cost functional is Lagrange, with an endpoint constraint on the state,
use this constraint to obtain φ(T ) and hence explicit solutions for φ(t), x(t).

3 If the cost functional is Bolza, use φ(T ) = ∇F (x(T )) to obtain a relation
between φ(T ) and x(T ); substitute this implicit expression for φ(T ) into all
equations to obtain explicit expressions for all constants and determine
x(t), φ(t).

4 Use the resulting explicit solutions for x(t), φ(t) in the equation for u(t) to
obtain the optimal control ū(t).
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Temperature control

The temperature in a room is denoted y(t). It is desired to heat the room (to a
target temperature) using the smallest possible amount of energy (heat). Let the
ambient (external) temperature be denoted ye . The rate of heat supply to the
room is denoted u(t). The dynamics of temperature change are then given by

dy

dt
= −a(y(t)− ye) + bu(t)

where a, b are constants depending on the insulation and rate of heat transfer.

Let the total energy (heat) be given by 1
2

∫ T

0
u2(t) dt. We are given the initial

temperature x(0).

The problem: Calculate the control function ū(t) that heats the room to
temperature yf at time T while minimizing the energy used, using two possible

performance indices: a) J = 1
2

∫ T

0
u2(t) dt; b) J = k[y(T )− yf ]2 + 1

2

∫ T

0
u2(t) dt

(i.e., the final temperature need not be precisely yf ).



Example: temperature control

Let x(t) = y(t)− ye and xf = yf − ye . If Lagrange,

J =

∫ T

0

L(t) dt

Problem is min
u(t)

J subject to dx
dt = −ax(t) + bu(t)

1 dx
dt

= Ax(t) + Bu(t)
2 x1(10) = 100

If Bolza,

J = F (x(T )) +

∫ T

0

L(t) dt

F (x(T )) = k[x(T )− xf ]2. min
u(t)

J subject to

1 dx
dt

= Ax(t) + Bu(t)
2 φ(T ) = ∇x(T )F (x(T ))
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Example: temperature control

The PMP-Hamiltonian is:

H(x(t), φ(t),u(t)) = λL(x(t),u(t)) + 〈φ(t),Ax(t) + Bu(t)〉

=
1

2
λu2(t)− φ(t)ax(t) + φ(t)bu(t)

The adjoint variational equation is:

dφ(t)

dt
= −∇xH(x(t), φ(t), u(t))

= − ∂

∂x(t)
[−φ(t)ax(t) + φ(t)bu(t)]

= φ(t)a
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Example: temperature control (cont)

Integrate above homogeneous 1st order ODE w const coeffs:

dφ(t)

dt
= φ(t)a

φ(t) = c exp(at)

Expressing c in terms of φ(T ):

c = exp(aT )φ(T )

φ(t) = exp[−a(T − t)]φ(T )
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Example: temperature control (cont)

∂H

∂u(t)
= φ(t)b + ū(t) = 0, 0 ≤ t ≤ T

or ū(t) = −φ(t)b. Now, insert implicit expression for control (φ(t)) into the
dynamical equation of the variational system (1st E-L equation):

dx

dt
= −ax(t)− b2φ(t)

= −ax(t)− b2 exp[−a(T − t)]φ(T )
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Example: temperature control (cont)

The equation dx
dt = −ax(t)− b2 exp[a(T − t)]φ(T ) can be integrated analytically

via Laplace transforms:

The Laplace transform of ax(t) is aX (s)

The Laplace transform of exp(−at) is 1
s−a

Laplace transform of dx
dt is sX (s)− x(0)

Thus, in the frequency domain, X (s) = x(0)
s+a − b2 exp(aT )φ(T ) 1

s+a s − a

The inverse LT of 1
s+a (L−1( 1

s+a )) is exp(−at)

L−1( 1
(s+a)(s−a) ) = sinh()

So
x(t) = x(0) exp(−at)− x(0)b2 exp(aT )φ(T ) sinh()
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Note both optimal control and state trajectory expressed implicitly in terms
of φ(T ); need φ(T ) to solve control problem

Two ways to obtain φ(T ):
1 Lagrange cost: use endpoint constraint on state, i.e., x(T ) = xf and solve for
φ(T ) from xf = x(0) exp(−at)− x(0)b2 exp(aT )φ(T ) sinh()

2 Bolza cost: use boundary condition

φ(T ) = ∇xF (x(T ))

= 2kx(T )

Then, obtain optimal control ū(t) from the third E-L equation (PMP
condition)

ū(t) = −φ(t)b

= exp[a(T − t)]φ(T )b

= exp[a(T − t)]...b

and insert into dynamical equation of variational system to obtain optimal
trajectory (here, temperature of the room as a function of time)

x(t) = x(0) exp(−at)− x(0)b2 exp(aT )... sinh().
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Dynamical equation of the adjoint system: bilinear control

For bilinear control systems, we can make the identification

∇x(t)(H− λL) =

(
AT +

∑
i

BT
i ui (t)

)
φ(t)

So we have

dφ(t)

dt
= −λ∇x(t)L−

(
AT +

∑
i

BT
i ui (t)

)
φ(t).

If L = L(u(t)) (i.e., L is not a function of x(t), which is almost always the
case since −L typically represents a resource cost) we have

dφ(t)

dt
= −

(
AT +

∑
i

BT
i ui (t)

)
φ(t).
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The second Euler-Lagrange equation: bilinear systems

Whereas for bilinear systems,

∇u(t)H = 0, 0 ≤ t ≤ T

= λ∇u(t)L(u(t)) +
∑
i

〈φ(t),Bix(t)〉ei .



PMP conditions for functionals: bilinear control

For a bilinear control systems, the PMP thus demands that

∂HL

∂ui (t)
= λ

∂L(u(t))

∂ui (t)
+ 〈φ(t),Bix(t)〉 = 0, 0 ≤ t ≤ T ,

for cost functionals of the Lagrange type.

For cost functionals of the Bolza type, we have

∂HB

∂ui (t)
= λ

∂L(u(t))

∂ui (t)
+ 〈φ(t),Bix(t)〉 = 0

for bilinear control systems, with the boundary condition
φ(T ) = ∇x(T )F (x(T )) on the costate imposed.

For cost functionals of the Mayer type, we have

∂HM

∂ui (t)
= 〈φ(t),Bix(t)〉 = 0

for bilinear control systems, with the boundary condition
φ(T ) = ∇x(T )F (x(T )) on the costate imposed.
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State manifolds arising in quantum control

The Hilbert sphere SH is the space of pure states. The state vector is |ψ(t)〉.

Since we have a Schrödinger equation for the unitary propagator U(t) as
well, an alternative state manifold is the unitary group U(N). The state
matrix is then U(t).

Since the map U(t) 7→ ψ(t) is many-to-one, control over U(t) is generally
more difficult.
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State manifolds (and tangent spaces)

The tangent space to a manifold at a point p is intuitively the flat plane
touching the manifold at that point. It is generally important when there are
constraints on the components of the state vector (e.g., sphere S2 embedded
in R3).

Formally, the tangent space at p is the set of all tangent vectors to the
manifold at p, with each tangent vector of a smooth curve σ (in the ambient
space) passing through p. σ(0) = p, dσ

dt |t=0 = v .

In practice, TpM is the null space of the Jacobian of the system of equations
that defines the submanifold M ⊂ Rn.
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Tangent spaces important in quantum control

Tangent space to SH

Let SH denote the Hilbert (complex) sphere, the 2N − 1 dimensional space of all
N-component complex vectors whose (Hermitian) norm 〈ψ|ψ〉 = 1. Then the
tangent space TS is the set of all complex vectors ψ⊥ satisfying 〈ψ|ψ⊥〉 = 0.

Tangent space to U(N)

TUU(N) := {UA : A† = −A} is the tangent space to the unitary group U(N) at
U. Here, A = iB (B = B†) is a skew-Hermitian N × N matrix, an arbitrary
element of the Lie algebra u(N).
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Optimal control problems on U(N)

On SH, the optimal control problem may be stated as

max
ε(·)

J[ψ(·), ε(·)]

subject to the dynamical constraint of the Schrödinger equation.
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Lagrangian functional for pure state control

The Lagrangian functional for pure state control is

J̄[ ψ(·), φ(·), ε(·)] = F (ψ(T )) +

∫ T

0

[
λL(ψ(t), ε(t))

+ Tr
{
φ†(t)

(
− i

~
(H0 − ε(t) · µ)ψ(t)− dψ(t)

dt

)}]
dt

where φ(t) ∈ Tψ(t)SH.
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Expressing the costate in terms of the state

For bilinear quantum control systems, based on the above Lagrangian functional,
we have for the costate equation

dφ†(t)

dt
=

i

~
φ†(t)(H0 − ε(t) · µ).

Note that we have invoked the Hermiticity of the matrices H0 ≡ A, µ ≡ B, in
addition to exploiting bilinearity.

For linear systems, it is not possible to express φ(t) in terms of ψ(t) in this
simple general way because an analogous constant of the motion does not
exist. The explicit expression for φ(t) will depend on the specific form of the
matrices A, B.
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Expressing the costate in terms of the state (cont)

Based on the dynamical and adjoint equations, for quantum control systems
we have

d

dt

(
ψ†(t)φ(t)

)
=

dψ†(t)

dt
φ(t) + ψ†(t)

dφ(t)

dt
+

=
i

~
[
ψ†(t)(H0 − µε(t))φ(t)− ψ†(t)(H0 − µε(t))φ(t) = 0

]
,

i.e., matrix elements of ψ†(t)φ(t) are constants of the motion and, in
particular, ψ†(t)φ(t) = ψ†(T )φ(T ), so we may express the costate vector in
terms of the state vector: φ(t) = ψ(t)ψ†(T )φ(T ).
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PMP Hamiltonian for pure state control

For control on SH, the PMP-Hamiltonian is:

H[ψ(t), φ(t), ε(t)] = λL(ψ(t), ε(t))− 〈φ(t),
i

~
H0ψ(t)〉+

+ ε(t)〈φ(t),
i

~
µψ(t)〉,

= λL(ψ(t), ε(t))− 〈ψ(t)ψ†(T )φ(T ),
i

~
H0ψ(t)〉+

+ ε(t)〈ψ(t)ψ†(T )φ(T ),
i

~
µψ(t)〉.
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Pontryagin’s theorem on SH

For the class of quantum control problems on SH with fixed terminal time T , the
Pontryagin Maximum Principle is:

Theorem

(Pontryagin) An optimal control ε̄(·) that solves

max
ε(·)

J[ψ(·), ε(·)]

satisfies ∂H
∂ε(t) = 0 for a matrix φ(T ) = ψ(T )ψ†(t)φ(t) and scalar λ where at least

one of φ(T ), λ is nonzero.
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PMP for pure state control

The PMP thus demands that

∂H

∂ε(t)
= λ

∂L(ε(t))

∂ε(t)
− i

~
φ†(t)µψ(t) = 0, 0 ≤ t ≤ T ,

For Bolza functionals, imposing the boundary condition Φ(T ) = ∇ψ(T )F (ψ(T )),
we have

λ
∂L(ε(t))

∂ε(t)
− i

~
〈φ†(T )∇ψ(T )F (ψ(T ))ψ†(t)µψ(t)〉 = 0,

whereas for Mayer functionals, we have

Φ(T ) = − i

~
〈φ†(T )∇ψ(T )F (ψ(T ))ψ†(t)µψ(t)〉 = 0,
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Optimal control problems on U(N)

On U(N), the optimal control problem may be stated as

max
ε(·)

J[U(·), ε(·)]

subject to the dynamical constraint of the Schrödinger equation.
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The Lagrangian functional for control problems on U(N)

Define the Lagrangian functional J̄ that directly imposes the dynamical constraint:

J̄[ U(·), φ(·), ε(·)] = F (U(T )) +

∫ T

0

[
λL(U(t), ε(t))

+ Tr

{
φ†(t)

(
− i

~
(H0 − ε(t) · µ)U(t)− dU(t)

dt

)}]
dt

where φ(t) ∈ TUU(N).
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The PMP Hamiltonian on U(N)

For a bilinear control system of the form evolving on the unitary group, the
PMP-Hamiltonian is:

H[U(t), φ(t), ε(t)] = λL(U(t), ε(t))− 〈U†(T )φ(T ),
i

~
U†(t)H0U(t)〉

+ ε(t)〈U†(T )φ(T ),
i

~
U†(t)µU(t)〉

where (as before)
φ(T ) = U(T )U†(t)φ(t),

with
dφ(t)

dt
= − i

~
(H0 − ε(t) · µ)φ(t).
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Pontryagin’s theorem on U(N)

For the class of quantum control problems on U(N) with fixed terminal time T ,
the Pontryagin Maximum Principle is:

Theorem

(Pontryagin) An optimal control ε̄(·) that solves

max
ε(·)

J[U(·), ε(·)]

satisfies ∂H
∂ε(t) = 0 for a matrix φ(T ) = U(T )U†(t)φ(t) and scalar λ where at

least one of φ(T ), λ is nonzero.
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PMP conditions on U(N)

The PMP thus demands that

∂H

∂ε(t)
= λ

∂L(ε(t))

∂ε(t)
− i

~
Tr
(
U†(T )φ(T )U†(t)µU(t)

)
= 0, 0 ≤ t ≤ T , (10)

which can be used directly for cost functionals of the Lagrange type. For cost
functionals of the Bolza type, imposing the endpoint boundary condition
φ(T ) = ∇U(T )F (U(T )), we have

∂HB

∂ε(t)
= λ

∂L(ε(t))

∂ε(t)
− i

~
Tr
(
U†(T )∇U(T )F (U(T ))U(†t)µU(t)

)
= 0 (11)

whereas for cost functionals of the Mayer type, we have

∂HM

∂ε(t)
= − i

~
Tr
(
U†(T )∇U(T )F (U(T ))U(†t)µU(t)

)
= 0. (12)
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Objective functions for pure states

Quantum observable control

J1(ε(·)) = F1(ψT ) = 〈ψ|Θ|ψ〉, (13)

Quantum state control

J2(ε(·)) = F2(ψT ) = 〈ψf |ψ(T )〉 (14)

Cost F1 represents expectation value of observable Θ

Cost F2 represents fidelity with which target state ψf is achieved
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Objective functions on U(N)

Quantum observable control

J1(ε(·)) = F1(UT ) = Tr(UTρ0U†TΘ), (15)

Quantum gate control

J2(ε(·)) = F2(UT ) = ||W − UT ||2 (16)

Bolza cost functionals are useful for observable control, since perfect achievement
of the kinematic objective is not always required for those problems and they are
numerically simpler to optimize than Lagrange functionals with an endpoint
constraint.

Cost F2 represents fidelity of quantum gate W
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MAY MENTION SOME SPECIFIC MOLECULAR OBSERVABLE CONTROL
EXS HERE W HAM, DENSITY AND OBSERVABLE MATRICES WRITTEN
OUT; COULD REFER BACK TO THOSE MATRICES INTRODUCED IN Q
CHEM LECTS
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Control gradients for observable and propagator control

For observable control:

∇U(T )F (U(T )) = U(T )[U(T )ρU†(T ),Θ]. Thus,

δJ(ε(t))
δε(t) = Tr

(
µ(t)[U(T )ρU†(T ),Θ]

)
.

For propagator control:

∇U(T )F (U(T )) = U(T )W †U(T )−W . Thus,

δJ(ε(t))
δε(t) = Tr

(
µ(t)(W †U(T )− U†(T )W )

)
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Euler-Lagrange equations for propagator control

1
dU(t)
dt = − i

~ (H0 − ε(t) · µ)U(t), U(0) = U0

2
dφ(t)
dt = i

~ (H0 − ε(t) · µ)φ(t), φ(T ) = U(T )[U(T )ρU†(T ),Θ]

3
δHL(ε(t))
ε(t) = Tr

(
µ(t)[U(T )ρU†(T ),Θ]

)
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Euler-Lagrange equations for propagator control

1
dU(t)
dt = − i

~ (H0 − ε(t) · µ)U(t), U(0) = U0

2
dφ(t)
dt = − i

~ (H0 − ε(t) · µ)φ(t), φ(T ) = UW †U −W

3
δHL(ε(t))
ε(t) = Tr

(
µ(t)(W †U(T )− U†(T )W )

)
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Example: quantum state control of a single spin with
minimal energy

For Lagrange type cost functionals with bilinear qc systems, the special case
of a quadratic cost on the controls is worth attention because of its
interpretation in terms of the total fluence of the field. Consider case with
two controls εx(t), εy (t).
The system we are interested in is a single nuclear spin subjected to a static
magnetic field along the z-axis and a time varying radiofrequency magnetic
field along the x- and y-axes (denoted εx(t), εy (t) instead of Bx(t),By (t) to
unify control notations).

The problem

Find the time-varying fields εx(t) and εy (t) that drive the system to a specified
final state ψf at time T using minimal energy. The dynamical equation is

d

dt
|ψ(t)〉 =− i

~
~σ · ~ε(t)|ψ(t)〉

− i

~
[σzBz + σxεx(t) + σyεy (t)]ψ(t)〉
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Example: quantum spin state control (cont)

The cost functional is L(εx(t), εy (t)) = − 1
2 (ε2

x(t) + ε2
y (t)), Let

F (ψ(T )) = <〈ψf |ψ(t)〉. We want to max F (ψ(T )) = 1, i.e., achieve
ψ(T ) = ψf within a global phase.

Lagrange formulation:

J =
1

2

∫ T

0

ε2
x(t) + ε2

y (t) dt

H(ψ(t), φ(t), ~ε(t)) =
1

2
(ε2

x(t) + ε2
y (t))+

〈φ(t)| − i

~
[σzBz + σxεx(t) + σyεy (t)|ψ(t)〉
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Example: quantum spin state control (cont)

The costate equation is

dφ†(t)

dt
= ∇ψ(t)H(ψ(t), φ(t), ε(t))

= − i

~
φ†(t) [σzBz + σxεx(t) + σyεy (t)]

or
dφ(t)

dt
=

i

~
[σzBz + σxεx(t) + σyεy (t)]φ(t)
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Example: quantum spin state control (cont)

The PMP demands
∇~ε(t)H(ψ(t), φ(t), ~ε(t)) ≡ 0

or

εx(t) =
i

~
〈φ(t)|σx |ψ(t)〉εy (t) =

i

~
〈φ(t)|σy |ψ(t)〉

which implies

dεx(t)

dt
=

i

~
{
〈 d

dt
φ(t)|σx |ψ(t)〉+

〈
φ(t)|σx |

d

dt
ψ(t)〉}

dεy (t)

dt
=

i

~
{
〈 d

dt
φ(t)|σy |ψ(t)〉+ 〈 d

dt
φ(t)|σy |

d

dt
ψ(t)〉

}
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Example: quantum spin state control (cont)

Recall Pauli commutation relations: [σi , σj ] = iεijkσk where εijk denotes the
elements of a completely antisymmetric tensor (structure constants).

〈 d

dt
φ(t)|σy |ψ(t)〉 =

i

~
φ†(t) [σzBz + σxux(t) + σyuy (t)]σxψ(t)

〈φ(t)|σy |
d

dt
ψ(t)〉 =

i

~
φ†(t)σx [σzBz + σxux(t) + σyuy (t)]ψ(t)

So

u̇x(t) = (
i

~
)2φ†(t)[σx , σy ]uy (t)ψ(t) = − i

~

2

(φ†(t)σzψ(t)uy (t)− φ†(t)σyψ(t)Bz)

u̇y (t) = (
i

~
)2φ†(t)[σy , σx ]ux(t)ψ(t) =

i

~

2

(φ†(t)σzψ(t)ux(t)− φ†(t)σxψ(t)Bz)

or in the Heisenberg picture

− i

~
[H, σx(t)] = − i

~
[σzBz + σxux(t) + σyuy (t), σx(t)]
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Additional conserved quantities: PMP-Hamiltonian
conservation

Applying PMP-Hamiltonian conservation is useful for the application of gradient
ascent or conjugate gradient algorithms

d

dt
[ψ†(t)φ(t)] =

d

dt
[φ†(t)ψ(t)] =

dψ†(t)

dt
φ(t) + ψ†(t)

d

dt
φ(t)

= 0

where the latter follows from the symmetry of the state and costate variational
equations for bilinear qc systems. So we have ψ†(t)φ(t) = ψ†(t)φ(T ) and
φ(t) = ψ(t)ψ†(T )φ(T ) (Note this is equiv to φ(t) = U(t)U†(T )φ(T ))
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Additional conserved quantities: expectation value of σz

According to the condition d
dt

(
∂H
∂ε(t)

)
= 0, there are additional conserved

quantities (as long as ∂H
∂ε(t) is not an explicit function of time). These can

help us solve the Lagrange control problem analytically if the dimension of
the system is sufficiently small, so that the additionally conserved quantities
provide enough additional conditions to fully specify the optimal control.

In the present case we have ∂
∂εz

H(ψ(t), φ(t), ε(t)) = 0 and hence

d
dt

[
∂
∂εz

H(ψ(t), φ(t), ε(t))
]

= 0 giving us the conserved quantity

〈φ(t)|σz |ψ(t)〉 = K .
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Example: quantum spin state control (cont)

Applying the latter conservation law in the equations for ε̇x(t) and ε̇y (t), and
recalling that φ†(t)σyψ(t) = εy (t) (similarly for εx), we obtain the coupled
system of first order ODEs

ε̇x(t) = −(K − Bz)εy (t)

ε̇y (t) = (K − Bz)εx(t)

which has (parametric) solutions

εx(t) = C cos(ωt + α)

εy (t) = C sin(ωt + α)
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Example: quantum spin state control (cont)

Next step: Solve for C (field’s temporal amplitude scale), ω (field frequency),
and α (field phase) given endpoint constraint, ψ0 (normalization is implicit in
these conditions)

Need to insert parametric solns into dynamical or costate equations and
explicitly integrate.

d

dt
|ψ(t)〉 = − i

~
[σzBz + Cσx cos(ωt + α) + Cσy sin(ωt + α)] |ψ(t)〉

=

(
Bz C exp[−i(ωt + α)]

C exp[i(ωt + α)] −Bz

)
|ψ(t)〉

subject to ψ(T ) = ψf (two conditions), ψ(0) = ψ0 (one additional condition)
In the homework, we will solve for ψ(t) in 1st-order perturbation theory.

Note the system of dynamical odes is coupled due to norm constraint on ψ
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What is spin?

Particles in quantum mechanics (including both electrons and nuclei) have an
intrinsic property called spin, which is a form of angular momentum

The spin magnetic moment (which we denote by µs) is proportional to the
total spin S

Analogously to the dipole interaction with the electric field, the magnetic
field-spin interaction energy is −µs · B = cS · B
It is possible to manipulate nuclear spins in molecules without affecting the
rotational, vibrational, or electronic states; thus we focus on nuclear spins√
〈S2〉 is the expectation value of the total spin angular momentum of the

particle
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The Hilbert space of spin states

The Hilbert space HS has dimension N = 2n, where n is the number of spins
in the molecule

Each spin has 2 possible states; we denote the(m kets) |0〉, |1〉
For a system of n spins, the states are denoted |01..1〉, etc

For a molecule, we thus have Htot = HE ⊗HV ⊗HR ⊗HS

Due to the above decoupling, we will typically look at the Hilbert space of
spins in isolation
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Pauli spin operators

Observables corresponding to the x , y and z components of particle spin are
Sx ,Sy ,Sz :

Sx =
~
2

[
1 0
0 −1

]
, Sy =

~
2

[
0 −ı
ı 0

]
, Sz =

[
0 1
1 0

]
.

Eigenvalues are ~
2 , −

~
2 (“spin-1/2” particles)

Commutation relations are: [Si ,Sj ] = i~εijkSk where εijk is a completely
antisymmetric tensor

These are called the the fundamental commutation relations of angular
momentum and are satisfied by any form of angular momentum

(To be proven in HW) exp( i
~Si t) = Si (cos t + i sin t)
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Total spin angular momentum

Total spin angular momentum S2 = S2
x + S2

y + S2
z

Commutation relations:

[S2,Sx ] = [S2,Sy ] = [S2,Sz ] = 0

This means total angular momentum and any one component of angular
momentum can be measured simultaneously (assuming simultaneous
measurements discussed in lect 1, and Heisenberg uncertainty not necc to
cover in hw)

Spin up (|+〉 or |1〉)), spin down (|−〉 or |0〉)) conventionally refer to
z-component of spin angular momentum Sz ; these kets are eigenstates of Sz ;
hence measurement of Sz leaves the system in either a spin up or spin down
state
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Heisenberg coupling

Through-space coupling of nuclear spins (in a molecule) is typically modeled
using the Heisenberg coupling

Hc = J1,2S1 · S2 = S1
x S2

x + S1
y S2

y + S1
z S2

z

σj
k are n-qubit tensor products of (elements of su(2n)):

σj
k = I2 ⊗ · · · ⊗ I2︸ ︷︷ ︸

j−1

⊗ σk ⊗ I2 ⊗ · · · ⊗ I2︸ ︷︷ ︸
n−j

, k = x , y , z

J is the through-space NMR coupling constant. (We neglect the dipolar
coupling). The first two terms together constitute the drift Hamiltonian, and
the third term (without the field) is the control Hamiltonian. Here we have
generalized to n coupled spins.

Alternate description/type of coupling called Ising coupling involves only
z-component of spin, i.e., Hc = J1,2S1

z S2
z .

State space basis for two spins is |00〉, |01〉, |10〉, |11〉
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Kronecker products of Pauli matrices

Recall the formula for matrix representations of operators on a Hilbert product
space in terms of the Kronecker product. For 2 qubits, we have for example

σ1
x = σx ⊗ I2 =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 , σ2
x = I2 ⊗ σx =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 ,
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The Pauli Hamiltonian operators for spin-spin coupling

The spin-spin coupling terms σi
kσ

j
k above are special cases of so-called Pauli

operators {Oi}.
For two spin-1/2 particles: Ok = (σk ⊗ I2)(I2 ⊗ σk), k = x , y , z

Ox = σ1
xσ

2
x =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 , Oy = σ1
yσ

2
y =


0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0

 ,

Oz = σ1
zσ

2
z =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1
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A single nuclear spin in a rotating magnetic field

Static magnetic field oriented along z-axis

Time-varying magnetic field in x-y plane; view as constant modulus field
rotating about the z-axis (Bz) with angular frequency ω

Total Hamiltonian for a spin (two coupled spins?) in a rotating magnetic
field:

H(t) = cB(t) · S = cSzBz + gSxBx(t) + gSyBy (t)

H0 = cSzBz is the field-free Hamiltonian; eigenstates of H0 are |0〉 or |1〉
(from this we can calculate the equilibrium distribution of spins at a given
temperature, see below) with eigenvalues (energies) c ~

2 Bz , − c ~
2 Bz
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Schrödinger equation for single spin in rotating magnetic
field

HI = gSxBx(t) + gSyBy (t) (note this refers to interaction with field not
between particles)

The constant g << 1 (or < c?), so the static magnetic field is much stronger
than the time-varying one

Let Bx(t) = B sin(ωt); By (t) = B cos(ωt)

d

dt
ψ(t) = − i

~
[cB(t) · S]ψ(t)

= − i

~
[cSzBz + gSxBx(t) + gSyBy (t)]ψ(t)
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Introduction: energy eigenstate controllability of molecular
systems

We saw that the matrix elements of the dipole moment operator, 〈i |µ|j〉
determine the selection rules for light-induced transitions in atoms and
molecules

However, we also saw that direct (one photon) transitions between energy
levels are not the only route for “state-to-state” transitions

What are the analog of “selection rules” for multiphoton transitions?

More generally, what determines if a initial wavefunction |ψ(0)〉 can be driven
to any arbitrary final state |ψ〉 (at time T )?

Subject is called controllability
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Reachable set

Reachable set

The reachable set R(x0,T ) at time T is the set of states x(T ) that can be
reached from x0 (the initial state) by an admissible control

The complete reachable set R(x0) =
⋃

T>0 R(x0,T )
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Controllability

Full controllability

A control system is (fully) controllable (at time T ) if the reachable set R(x0,T ) is
equal to the state manifold.

For unitary propagator (operator) quantum control, full controllability means
R(ψ0,T ) = U(N)

For pure state control, full controllability means R(U0,T ) = SHN

Controllability theory does not rest on use of any particular cost functional,
but sufficient conditions for controllability are sometimes conveniently derived
using Lagrange functionals (with final state specified)

Prof. Raj Chakrabarti CHE 597: Introduction to Quantum Control Engineering May 14, 2014 153 / 334



Formal solution to general linear systems

Obtain the formal solution to the linear vector differential equation
dx
dt = Ax(t) + Bu(t) in two steps:

1 Solve the homogeneous differential equation dx
dt

= Ax(t); this provides a
reference frame moving with x(t) in absence of control

2 Rotate x(t) to this reference frame; this produces a differential equation for
y(t) = U−1(t)x(t); solve it by direct integration and then rotate back to the
original reference frame

We know the solution to the homogeneous equation is x(t) = exp(At)x(0)
(matrix exponential) and the time evolution propagator U(t) = exp(At)
satisfies dU

dt = AU(t)

For the second step, use U̇−1(t) = −U−1(t)A; hence
U̇−1(t)x(t) = −U−1(t)Ax(t)

d

dt

(
U−1(t)x(t)

)
= U−1(t)

dx

dt
+ U̇−1(t)x(t) =

U−1(t)[Ax(t) + Bu(t)]− U−1(t)Ax(t)

So d
dt

(
U−1(t)x(t)

)
= U−1(t)Bu(t) or

x(T ) = U(T )x(0) + U(T )

∫ T

0

U−1(t)Bu(t) dt



Formal solution to general linear systems: Laplace
transform

Consider solution of the general first-order scalar ode with constant

coefficients: dx(t)
dt = ax(t) + bu(t) with general, unknown control function

u(t) (not necc optimal for quadratic cost), via Laplace transforms

L[ dx(t)
dt ] = L[ax(t) + bu(t)]

Generalize to system of first-order linear odes

(sI − A)x(s) = x(0) + Bu(s)

x(s) = (sI − A)−1[x(0) + Bu(s)]

Inverse LT gives

x(T ) = U(T )x(0) + U(T )

∫ T

0

U−1(t)Bu(t) dt

(compare L−1[x(s)] = L−1
[
x(0)+bu(s)

s−a

]
for scalar x)



Full controllability of time-invariant linear systems

For linear control systems, it is a simple matter to assess full (state)
controllability; find conditions that guarantee that x(T ) can be driven to 0
(since transferring system from any initial state to any final state may be put
in this form by placing origin of state vector at desired target state)

x(T ) = 0 = exp(AT )x0 +

∫ T

0

exp(A(T − t ′))Bu(t ′) dt ′

= exp(AT )

[
x(0) +

∫ T

0

exp(−At ′)Bu(t ′) dt ′

]
(recall u(t) for linear systems is m-component vector of controls, B is N ×m
matrix)

According to the Cayley-Hamilton theorem, instead of Taylor expanding the
matrix exponentials, we may represent them as matrix polynomials with at
most N − 1 terms:

exp(−At) = a0(t)IN + a1(t)A + a2(t)A2 + · · ·+ aN−1(t)AN−1

where each ai (t) is a scalar function of t and the eigenvalues of A
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The (time-invariant) controllability matrix

So we have (left multiplying by exp(−AT ))

−x(0) = B

∫ T

0

a0(t ′)u(t ′) dt ′ + AB

∫ T

0

a1(t ′)u(t ′) dt ′ + · · ·+

+ AN−1B

∫ T

0

∫ T

0

aN−1u(t ′) dt ′

Can write as
[B,AB, · · · ,AN−1B][

∫ T

0
a0(t ′)u(t ′) dt ′, · · · ,

∫ T

0
aN−1(t ′)u(t ′) dt ′]T (note

latter is Nm-dim vector since u is m-dim)

The N ×Nm controllability matrix is [B,AB, · · · ,AN−1B]. If it is nonsingular
(has N linearly independent rows/columns; or N nonzero singular values; or
rank is N), the system is fully controllable since we can solve for u(t) from
this system of equations and independently drive all N elements of x(T ) to 0

Check rank condition by singular value decomposition of controllability
matrix (matrix is square only for one control)
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Rank condition: numerical methods

Singular value decomposition

Recall the definition of singular value decomposition: for an N ×m matrix A, the
singular value decomposition is

A = USV T ,

where U is an N ×m orthogonal matrix, S is a m×m diagonal matrix, and V is a
m ×m orthogonal matrix. The singular values of A are the diagonal elements
s1, · · · , sm; si = +

√
λi , where λi are the eigenvalues of B = ATA.

Columns of U (left singular vectors of A) corresponding to si 6= 0 are
orthonormal basis vectors for the vector space spanned by the columns of A
(range of A)

This method for constructing an orthonormal basis is much more numerically
stable than standard Gram-Schmidt orthogonalization
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Controllability of time-invariant linear systems

Use a quadratic Lagrange cost L(u(t)) = uT (t)u(t) with a terminal state
constraint xf

Recall the form of the optimal control for the temperature control problem;
generalize to vector linear system: ū(t) = −BTφ(t)

Similarly generalize the costate differential equations: dφ(t)
dt = −ATφ(t)

Generalize φ(t) solution as φ(t) = exp(AT (T − t))φ(T )

Then the state system of odes becomes:
dx
dt = Ax(t)−BBT exp(AT (T − t))φ(T ) or dx

dt = Ax(t)−BBTUT (T , t)φ(T )



Controllability of time-invariant linear systems

Use the explicit solution for the linear system of odes above:

x(t) = U(t)x(0)− U(t)

(∫ t

0

U−1(t ′)BBTUT (T , t ′) dt ′
)
φ(T )

= U(t)x(0)−
(∫ t

0

U(t, t ′)BBTUT (t, t ′) dt ′
)
φ(T );

solve for φ(T ) given known x(T ):

φ(T ) =

(∫ T

0

U(T , t ′)BBTUT (T , t ′) dt ′

)−1

(U(T )x(0)− xf )

Then substituting φ(T ), obtain ū(t) = BTUT (t, t)G−1(T )[xf − U(T )x(0)];
condition for full controllability at time T is that the N × N controllability
Gramian

G (T ) =

∫ T

0

U(T , t ′)BBTUT (T , t ′) dt ′

is nonsingular



Local controllability

For (time-varying) nonlinear systems (i.e., dx
dt = F (x , u)), there are no general

rules for assessing full (state) controllability

Must generally limit to local controllability, i.e., whether there exists a
control perturbation δu(t) that can achieve any arbitrary small perturbation
from a nominal (reference) trajectory

Denoting the reference trajectory by xr (t) and the perturbed trajectory by
x(t), we have

x(T ) = xr (T ) + U(T )δx(0) +

∫ T

0

U(T , t ′)B(t ′)δu(t ′) dt ′

where B(t ′) denotes the N ×m Jacobian matrix ∂F
∂u(t) and

U(T ) = T exp[
∫ T

0
∂F
∂x(t) dt] is N × N (both partial Jacobians evaluated at

x = 0, u = 0)

Local controllability is equivalent to the ability to drive all components of
x(T ) to 0 by appropriate choice of δu(t) over the interval 0,T



Local controllability (cont’d)

A sufficient condition for local controllability is that the N × N controllability
Gramian matrix

G (T ) =

∫ T

0

U(T , t ′)B(t ′)BT (t ′)UT (T , t ′) dt ′

is nonsingular

This follows because the control perturbation δu(t) necessary to drive x(T )
to zero is δu(t) = BT (t)UT (T , t)G−1(T )[−xr (T )− U(T )δx(0)] (note can
set δx(0) = 0 if interested in control perturbations alone)

Note that for linear time-variant systems, the controllability condition is
derived as above but setting xr (t) = 0

However, for bilinear systems (a particular class of nonlinear systems), full
controllability criteria exist
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Controllability versus optimality of controls

Optimal control theory seeks to maximize a cost function that may contain a
contribution from the state as well as the control

For Bolza and Mayer cost functionals, optimality of the control does not
imply that a desired state is reachable.

For Lagrange functionals, generally check controllability/reachability before
imposing a terminal state constraint.

If the system is uncontrollable, numerical algorithms may never achieve
perfect objective function fidelity!
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Controllability of bilinear systems

Consider the general bilinear control system:

dx(t)

dt
=

[
A +

∑
i

Biui (t)

]
x(t)

Note we assume the possibility of multiple controls (e.g., components of the
electric or magnetic field) with associated Hamiltonians Bi , 1 ≤ i ≤ m

Control consists of applying each control Hamiltonian Bi with amplitude
ui (t), generally in unison, at each time interval dt

The important feature of bilinear control systems that makes their
controllability easier to assess than general nonlinear control systems is the
fact that the solution to the ode can be formally expressed as a matrix
exponential
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Controllability of bilinear systems

Definition

A Lie algebra L is a vector space over a field F (here, real or complex numbers)
together with a bilinear operation [·, ·] : L × L → L called a Lie bracket that
satisfies the following conditions:

1 Bilinearity: [x + z , y ] = [x , y ] + [z , y ], [x , y + z ] = [x , y ] + [x , z ];
α[x , y ] = [αx , y ] = [x , αy ]

2 Skew-symmetry: [x , y ] = −[y , x ]

3 Jacobi identity: [x , [y , z ]] = −([z , [x , y ]] + [y , [z , x ]])

We will be concerned with Lie algebras where x , y are N × N matrices A,B
and the Lie bracket is the commutator [A,B] = AB − BA, with the field
F = R. The matrices we are concerned with are skew-Hermitian, i.e.,
A† = −A. The Lie algebra u(N) is the set of skew-Hermitian matrices
together with the commutator.

In this case, the matrix exponential exp(A) is an element of the associated
Lie group (see hw for further definitions).

Dynamical propagators in quantum mechanics are members of the unitary Lie
group U(N)



Application of BCH theorem

The application of a single control Hamiltonian Bi (or A +
∑

i uiBi ) with
amplitude ui for time ∆t produces time evolution exp

(
− i

~ui (t)Bi∆t
)

(for qc
systems)

This corresponds to (we call this) “motion in direction iBi ; use notation
iBi 7→ Bi

Can we only move system along directions corresponding to sums
A +

∑
i uiBi?

No - non-commuting Hamiltonians produce new directions:

exp(Bj∆t) exp(Bi∆t) = exp

{
Bi∆t + Bj∆t+

[Bi∆t,Bj∆t] +
1

2!
[Bi∆t, [Bi∆t,Bj∆t]]+

1

3!
[Bi∆t, [Bi∆t, [Bi∆t,Bj∆t]] + · · ·

}
Each commutator [Bi1 , [Bin−1 ,Bin ]] · · · is a new direction

For arbitrarily shaped controls, the system may be driven in any of these
directions by appropriate choice of ui (t) (we will prove this as a homework
problem)



Repeated Lie brackets

Definition

The Lie algebra generated by {A1, · · · ,An}, where Ai ∈ g , a Lie algebra, is the
subalgebra of g spanned by {A1, · · · ,An} and all their repeated commutators. We
denote this Lie algebra by {A1, · · · ,An}LA.

The linear span of the (possibly complex) matrices {A1, · · · ,An} is the set of
all matrices

∑
i ciAi with coefficients ci ∈ R.

If A1, · · · ,An are control Hamiltonians (i.e., for finite-dimensional quantum
control systems, g = u(N) or su(N)), the generated Lie algebra is called the
dynamical Lie algebra L of the control system.

Definition

A repeated Lie bracket is a Lie bracket of the form [An, · · · , [A2,A1]].
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Lie algebra rank condition

Dynamical Lie algebra

The dynamical Lie algebra L = su(N) (L = u(N)) (i.e., the system is fully
operator controllable; if the rank of the Lie algebra spanned by {A1, · · · ,An} and
all their repeated commutators is N2 − 1 (N2).

The proof follows from application of the BCH theorem, since sequential
application of the control Hamiltonians generates new directions in the Lie algebra

Note this implies that there exists a T and controls ui (t) such that
U(T ) = U for any U ∈ U(N); however, T can be very large and unknown.
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Lie algebra rank condition: numerical methods

To numerically check the Lie algebra rank condition:
1 Construct elements in the dynamical Lie algebra by taking commutators

[H0,Xi ], [µ,Xi ] for each Xi , with the initial set {Xi} = {H0, µ}
2 For each element (matrix) Xi in the current set, construct a column vector

whose elements are the linearly independent elements of the matrix
3 Concatenate these column vectors to obtain an N2 ×M matrix A
4 Do an SVD on A and obtain the rank of the range of A; if this is unchanged

from the last iteration, this is the rank of the dynamical Lie algebra
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Density matrix controllability

Unitarily equivalent states

Two density matrices (states) ρ1, ρ2 are said to be unitarily equivalent if we can
write ρ2 = Uρ1U† for some unitary matrix U. Of course, this is the same as
saying that ρ1, ρ2 share the same eigenvalue spectrum.

A quantum control system is said to be density matrix controllable if any density
matrix ρ2 is reachable from the all unitarily equivalent density matrices ρ1.
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Conditions for density matrix controllability

Controllability of two unitarily equivalent states (states with a given
eigenvalue spectrum) requires that the orbit {Uρ1U†|U ∈ exp(L)} is equal to
the largest possible such set, {Uρ1U†|U ∈ exp(u(N ))}.
To test for density matrix controllability, we need a simple (numerically
testable) condition for this

Since all possible evolutions of ρ0 under the action of arise from the
commutators (recall the von Neumann equation), a quantum system is pure
state controllable if

dim[iρ0,L] = dim[iρ0, u(N)]

The rhs of this equation it the dimension of the state manifold
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Pure state controllability

Recall that dim SHN
= 2N − 1

A quantum system is pure state controllable if

dim[iρ0,L] = 2N − 1

Note for molecular control problems, the required condition is even weaker
because only observable expectation values must be controlled

Because pure state controllability is generally satisfied and due to the
dependence of observable control on the nature of the observable, we will not
consider the latter here
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Because U(N) is compact, quantum system controllability has additional
favorable features beyond that of general bilinear systems

Specifically: for a controllable system any propagator can be written
U(T ) = exp(− i

~Hin tn) · · · exp(− i
~Hi1 t1) with finite n, for some set of Hij in

the dynamical Lie algebra

This means that sequential independent application of control Hamiltonians
can achieve any propagator or state (previously we considered arbitrary
superpositions of Hamiltonians)

There are important implications for quantum computing
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Optimization strategies for Bolza and Mayer costs

For numerical solutions based on the gradient of the objective function J
with respect to the control, need to integrate state, costate or both sets of
differential equations with an implicit expression for the field ε̄(ψ(t), φ(t)) at
each step.

In the absence of additional symmetries, need to integrate both state and
costate equations simultaneously.

With the additional symmetries of Hermiticity of the matrices A,B and
bilinearity of the control system, we can reduce the numerical problem to just
integration of the state equations in terms of φ(T ).

Recall the form of the gradient of the PMP-Hamiltonian with respect to the
control:

∂H

∂ε(t)
= − i

~
Tr
(

U†k (T )∇Uk (T )F (Uk(T ))Uk(†t)µUk(t)
)

for Mayer functionals and

∂H

∂ε(t)
= −ε(t)− i

~
Tr
(

U†k (T )∇Uk (T )F (Uk(T ))Uk(†t)µUk(t)
)

for Bolza functionals with quadratic fluence cost.



Computational considerations concerning the calculation of
the gradient

The above analytical expression for the gradient is equivalent to ∂J(ε(·))
δε(·) at

each time t

For numerical optimization, discretize the control: ε(t) = (ε(t1), · · · , ε(tn))

For gradient-based optimization of quantum systems, integrate just the
Schrödinger equation using, e.g., Runge-Kutta algorithms and compute the
gradient as above at each step; note there is no additional computational
cost in applying gradient algorithms compared to algorithms that only use the
value of J(ε(t)).

Application of gradient-based optimization to general control systems
requires the integration of the costate equations as well, to obtain the
gradient; optimization algorithms based only on the value of J(ε(·)) are less
expensive per iteration (generally true)

Algorithms based on the objective function value alone are typically
stochastic algorithms - i.e., starting two optimizations from the same initial
guess will not reach the same point on the parameter space in n steps -
whereas those based on the gradient (and/or Hessian matrix of second
derivatives) are typically deterministic.



Gradient flow (steepest ascent) algorithms

The simplest first-order algorithm is the gradient flow of the objective function;
the gradient flow trajectory is the solution us(t) to the initial value problem

∂us(t)

∂s
= α(s)

δJ(u(t))

δu(t)

for a specified initial guess for the control u0, where α(s) is an adaptive step size.

The discretized form of the gradient will be written ∇xJ(xs).

α(s) is typically determined by line maximization algorithms, which search for
the lowest function value along a given direction (here the gradient), e.g. by
trying a large α to start with, then backtracking until the minimum along the
direction is found.

We will discuss line maximization methods in both one- and multidimensions
in a later lecture
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More advanced deterministic algorithms: improvements on
steepest ascent

Note that the gradients ∇xJ(xs+1), ∇xJ(xs) in the steepest ascent method
on successive line maximizations are orthogonal, i.e.
∇xJ(xs+1) · ∇xJ(xs) = 0, which means that successive steps do not
“interfere” with each other’s maximizations.

However, note that ∇xJ(xs+2) · ∇xJ(xs) 6= 0, so that may counteract the
work done in the s-th minimization during the s + 2-th maximization

The notion of conjugate directions rectifies the above circumstance, based on
a second-order approximation to the objective function near the maximum.

The most basic improvements on steepest ascent - the conjugate gradient
(CG) and the quasi-Newton (QN) methods - are derived based on
second-order approximations of J. We will cover both in turn. These use only
first-order information to find the optimum of a function under the quadratic
approximation.
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Conjugate gradient optimization

Consider the 2nd-order Taylor expansion of an arbitrary multivariable function
around a point x̄ :

f (x) ≈ c +∇f (x̄)(x − x̄) +
1

2
(x − x̄)TH(x̄)(x − x̄).

Let the (symmetric) Hessian matrix H be full rank so there is a unique
solution (let us use the notation xi ≡ xi for convenience.

A well-behaved function can always be approximated in this way near the
optimum x̄ , but let us now assume that this approximation is valid for any xi ,
and make the replacement x̄ → xi .

At step 0, set the step direction h0 = g0, where g0 denotes ∇f (x0). At step i,
move in direction hi until the function stops decreasing. Let gi = ∇f (xi ).
Condition for maximum along a line: hi · gi+1 = 0

To improve upon SD, we ensure that all previous step directions are
perpendicular to the change of the gradient (“conjugacy condition”) that
occurs during the current step. According to the first-order Taylor expansion
for the gradient

g(xi+1)− g(xi ) ≈ H(xi )(xi+1 − xi )



The “conjugacy” condition is then

g(xi+1)− g(xi ) = H(xi )(xi+1 − xi )

hT
j [g(xi+1)− g(xi )] = hT

j H(xi )(xi+1 − xi )

= hT
j H(xi )hi = 0, ∀j < i .

A conjugate set with respect to a symmetric matrix H is a set of vectors such
that all hj , hi in the set satisfy hT

j Hhi if j 6= i

The first-order Taylor expansion for the gradient may be written

gi+1 = gi + λiH(xi )hi ,

where now we have scaled the step hi by a factor λi . λi is chosen to
maximize f along hi . We can solve for this step by applying the condition
hT
i gi+1 = 0 (line maximum condition).

Henceforth, use the notation H ≡ H(xi ) (assume a quadratic form with
constant Hessian)

Prof. Raj Chakrabarti CHE 597: Introduction to Quantum Control Engineering May 14, 2014 180 / 334



Obtaining the step size

To solve for the step size λi under the quadratic approximation, multiply
both sides of gi+1 = gi + λiHhi by hT

i , and apply hT
i gi+1 = 0:

hT
i gi+1 = hT

i gi + λih
T
i Hhi

λi = − hT
i gi

hT
i Hhi

Computationally, λi is found using a line maximization algorithm, which does
not require calculation of H(xi ).

Now assume that at each step the new step hi+1 can be written as a linear
combination of old step and new gradient vector:

hi+1 = gi+1 + γihi ;

we next solve for γi .



Obtaining the step update

We solve for the γi that satisfies the conjugacy condition for hi+1, hi :

hT
i+1Hhi = (gi+1 + γihi )

THhi = 0

= gT
i+1Hhi + γih

T
i Hhi

So γi = − gT
i+1Hhi
hTi Hhi

. Since Hhi = gi+1−gi
λi

,

γi =
−gT

i+1(gi+1 − gi )
1
λi

hT
i (gi+1 − gi )

1
λi

.

Because gT
i+1gi = 0 and hT

i gi+1 = 0, we obtain

γi =
gT
i+1gi+1

hT
i gi

.
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Although we have an expression for the λi ’s, they are computed using line
maximization approaches, since CG does not use the Hessian matrix H (due
to the expense of calculating it).

Note that for a quadratic form (e.g., f (x) = c + bT x + 1
2 xTHx or simply

f (x) = 1
2 xTHx , with Hessian H), the optimal x̄ = x0 +

∑n
i=1 λihi , i.e., the n

hi ’s comprise a (non-orthogonal) basis for Rn (they are said to be
“H-orthogonal”) with basis expansion coefficient λi . The CG algorithm then
converges to the optimum of the function in exactly n steps, whereas
steepest ascent may take an arbitrarily large number of steps to converge
depending on the initial guess.

The “conjugacy” of the directions in the above derivation holds rigorously
only for a quadratic form, where H is constant. In general, H will be a
function of xi , but we do not compute it in CG.
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Conjugate gradient optimization (cont)

It can be shown (try it) that hi step directions constructed by this algorithm
are all conjugate for a quadratic form, i.e.

hT
j Hhi = 0

for all j < i as well as

gi · gj = 0

gi · hj = 0, j < i .

The conjugate gradient method converges to the solution in N steps for a
function f that is a quadratic form; a more sophisticated convergence
analysis is required for other functions, which we may revisit later.
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Quasi-Newton methods

Newton’s method in multidimensions uses the inverse Jacobian matrix to find
the roots of a system of nonlinear equations.

When these equations correspond to the components of the gradient vector,
the method can be used to find minima/maxima

Quasi-Newton methods are applied only to function optimization. They are
based on the similar principles to conjugate gradient, but rather than
searching for conjugate directions based on gradient information, they
directly use the approximations to (inverse) Hessian to compute successive
step directions.

The approximations to the inverse Hessian in Quasi-Newton methods only
require computation of the gradient!

We start with Newton’s method (also called the Newton-Raphson method) in
multidimensions
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Quasi-Newton methods (cont)

Consider finding the solution the system of equations F (x) = 0

Denoting the components of the Jacobian matrix of F by Jij = ∂Fi

∂xj
, we have

F (xi+1)− F (xi ) ≈ J (xi )(xi+1 − xi )

Setting F (xi+1) = 0, we get xi+1 − xi ≈ −J−1(xi )F (xi ) as the Newton step

To apply this to minimization of a function f (x), we set F (x) = ∇f (x).
Then,

∇f (xi+1)−∇f (xi ) ≈ H(xi )(xi+1 − xi )

xi+1 − xi ≈ −λiH−1(xi )∇f (xi )

where in the second line we have set ∇f (xi+1) = 0 as the condition for
reaching the maximum in one step, unlike conjugate gradient where we aim
to reach the maximum along a line in each step. The step length λ = 1 for a
quadratic form.

We will return to the general Newton-Raphson (NR) method when we discuss
numerical methods for constrained optimization.
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Quasi-Newton methods (cont)

The Newton step is “successful” if ∆f = f (xi+1)− f (xi ) > 0. Consider the
second-order Taylor expansion for ∆f :

∆f = ∇f (xi )(xi+1 − xi ) +
1

2
(xi+1 − xi )

TH(xi )(xi+1 − xi ) > 0

Inserting the Newton step, we get

∆f = −(xi+1 − xi )
TH(xi )(xi+1 − xi ) +

1

2
(xi+1 − xi )

TH(xi )(xi+1 − xi )

= −1

2
(xi+1 − xi )

TH(xi )(xi+1 − xi ) > 0

which is satisfied if H is negative-definite and the step scale λ > 1/2. Because
this is not always true, Quasi-Newton methods replace the inverse Hessian with an
approximate inverse Hessian Q such that limi→∞Q(xi ) = H−1(xi ).
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Hessian updating schemes

x − xi = −H−1∇f (xi )

This would take one to max if f is quadratic form; instead use line search to
see where to stop

Don’t know H,H−1; Start w e.g. Q0 = ±I as H−1 guess (initial guess
depends on whether we are maximizing or minimizing f )

Subtract equations at iterations i and i + 1 and let ∇fi ≡ ∇f (xi ):

xi+1 − xi = Qi+1(∇fi+1 −∇fi )

Note we have chosen to require the new approximate inverse Hessian Qi+1

satisfies this condition just like the real inverse Hessian would if f were a
quadratic form

Prof. Raj Chakrabarti CHE 597: Introduction to Quantum Control Engineering May 14, 2014 188 / 334



Hessian updating schemes (cont)

Qi+1 = Qi+ correction term

Find possible correction terms consistent with above expression

Since the approximate inverse Hessian must be symmetric, the inverse
Hessian update must take the form Qi+1 = Qi + Qu

i , where the correction
term Qu

i is also a symmetric matrix

A general symmetric matrix of order n can be written in the form∑n
i=1 aiviv

T
i =

∑n
i=1 aivi ⊗ vi , i.e. as an expansion over the outer products

of its eigenvectors vi (with the expansion coefficients being the corresponding
eigenvalues).

The most common updating schemes are rank-two updates, i.e.,
Qu

i = a1v1 ⊗ v1 + a2v2 ⊗ v2

Rank two updates provide more flexibility in satisfying the QN condition on
the inverse Hessian while generating efficient update scheme

The standard rank-two update schemes are called DFP
(Davidon-Fletcher-Powell), and BFGS (Broyden-Fletcher-Goldfarb-Shanno)
updates; they are closely related, with the BFGS generally performing better.



DFP (Davidon-Fletcher-Powell) updating

The DFP updating scheme for the inverse Hessian approximation uses
v1 = xi+1 − xi ≡ hi , and v2 = Qi (∇fi+1 −∇fi ) := Qi (gi+1 − gi ):

Qi+1 = Qi +
hi ⊗ hi

hT
i (gi+1 − gi )

− [Qi (gi+1 − gi )]⊗ (Qi (gi+1 − gi )]

(gi+1 − gi )TQi (gi+1 − gi )

Verify that this satisfies the QN required condition on the inverse Hessian by
plugging into above expression hi = Qi+1(gi+1 − gi ); this comes from 2nd
term while third term cancels out contribution from Qi

We have
[hi ⊗ hi ](gi+1 − gi ) = hi [h

T
i (gi+1 − gi )]

and
[Qi (gi+1 − gi )]T (gi+1 − gi ) = (gi+1 − gi )

TQi (gi+1 − gi )

An advantage of QN methods over CG is that their formulation does not refer
to precise maximization along each step direction (note we did not require
gT
i+1gi = 0); we will return to this when we discuss line search methods below



BFGS (Browden-Fletcher-Goldfarb-Shanno) updating

The BFGS update is analogous to the DFP update, but written for the
Hessian instead of the inverse Hessian

It follows from recognizing that if one has an update formula for Qi = H−1
i ,

one can obtain an update for Hi by replacing Qi by Hi and interchanging the
roles of xi+1 − xi ≡ hi and ∇fi+1 −∇fi := gi+1 − gi

The BFGS update for Hi is then

Hi+1 = Hi +
(gi+1 − gi )⊗ (gi+1 − gi )

(gi+1 − gi )Thi
− (Hihi )⊗ (Hihi )

hT
i Hihi

The resulting formula for Hi+1 can then be inverted to obtain the update for
the inverse Hessian Qi+1

The reason the BFGS update can be applied with low computational
expense, despite the fact that the update is defined in terms of the Hessian
rather than inverse Hessian, is that there exists a analytic formula called the
Sherman-Morrison formula for the inverse of a “matrix plus an update” when
the update takes the form of an outer product of vectors.



Sherman-Morrison matrix inversion lemma

Through a matrix Taylor expansion, we can simplify (A + u ⊗ v)−1:

(A + u ⊗ v)−1 = ((I + A−1u ⊗ v)−1)A−1

= (I − A−1u ⊗ v + A−1u ⊗ v · A−1u ⊗ v)A−1

= A−1 − A−1u ⊗ A−1v(1− λ+ λ2 − · · · )

= A−1 − A−1u ⊗ A−1v

(1− λ)

where we have used the associativity of matrix and tensor products and
λ = vTA−1u.

The Sherman-Morrison formula is

(A + u ⊗ v)−1 = A−1 − (A−1u)⊗ (A−1v)

1− vTA−1u

You may apply it to the Hessian update above (possibly in a homework) to
obtain the explicit expression for Qi+1 given Qi (adds an additional correction
term to DFP)

S-M formula is very often used in numerical analysis to update inverse of a
matrix given a perturbation with minimal computational expense



Line search (adaptive step size) without bracketing

Line search without bracketing is designed to increase the function
“sufficiently” but not necessarily precisely to the line maximum

These are commonly used in NR and QN methods, but not as much in CG
(for which bracketing is used); the reason is that NR/QN do not require
precise maximization along a line, as discussed

Let xnew = xold + λp, 0 < λ ≤ 1 where p is the (Quasi-)Newton direction;
for QN algorithm at step i , xold is xi , xnew is the current attempt at xi+1

Start with λ = 1; set acceptance criteria that must be satisfied, or otherwise
reject and backtrack.

Criteria not just f (xnew ) ≥ f (xold). Require average rate of decrease of f to
be at least fraction α < 1 of initial rate of increase (∇f · p): i.e. check if
f (xnew )− f (xold) ≥ α(∇f · p)
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Polynomial line search (backtracking)

Algorithm:
1 Let y(λ) = f (xold + λp); λ parametrizes a straight line through the parameter

space in the direction p; then dy
dλ

= ∇f · p, i.e., directional derivative of f
along p Solve for second order coeff based on matching value at y(1); then
solve for zero of derivative. Use this maximum as next guess

2 Do not compute the gradient at any point other than xold ; i.e., only y ′(0)
3 In next iteration use a cubic model (higher order Taylor approximation of

y(λ)) based on same principle

Step 1: y(λ) = (y(1)− y(0)− y ′(0))λ2 + y ′(0)λ+ y(0); y(1) is known

Check: y(1) = y ′(0) + y(0) + y(1)− y ′(0)− y(0)

Solve for λ2 = λmax (i.e., λ such that dy
dλ = 0)

2λ(y(1)− y(0)− y ′(0)) + y ′(0) = 0

λ2 =
y ′(0)

2(y(1)− y(0)− y ′(0))

The latter is the new λ guess; we have λ2 < 1 since the curvature is negative



Polynomial line maximization (cont)

Compute y(λ2) using λ2 from quadratic model

Now model y(λ) as a cubic, using the four known values
y(0), y(1), y ′(0), y(λ2):

y(λ2) = aλ3
2 + bλ2

2 + y ′(0)λ2 + y(0)

y(1) = a + b + y ′(0) + y(0)

Solve the above system of equations for a, b

Find (local) maximum of the cubic:

dy

dλ
= 3aλ2

2 + 2bλ2 + y ′(0) = 0

λ2 =
−2b ±

√
(2b)2 − 4(3a)y ′(0)

6a

Compare graphs for quadratic and cubic polynomials)

Set λmin = λ3; note that λ3 < λ2

Do same for λ4, · · · , λn, since higher order polynomials will have multiple
local maxima
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Golden section search

Bracketing is a method for obtaining the minimum of an objective function J
along a given direction (vector); it is typically used with conjugate gradient
methods along the successive noninterfering directions

A bracket of a minimum of an objective function J is a triplet of points
a < b < c where f (a) > f (b) and f (c) > f (b); we then have a < xmin < c ; b
is current guess for minimum

Golden section search: updates bracketing until bracket is narrowed within a
given tolerance

Based on initial bracket, choose new pt x between a, b or b, c

Given latter choice, if f (b) < f (x), new bracket is a, b, x ; otherwise b, x , c

Given former choice, if f (b) < f (x), new bracket is a, x , b; otherwise x , b, c
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Golden section search (cont)

Algorithms exist for choosing x given a, b, c : golden section search involves
using larger of two intervals

Let b−a
c−a = w , then c−b

c−a = 1− w . Assume w < 0.5

Call the first possible choice for the new bracket “Bracket I” (a, b, x) and the
second “Bracket II” (b, x , c); assume (will validate shortly) that b < x < c .

Impose condition that length of bracket I, |x − a|, equals length of bracket II,
|c − b|.
Then must have |b − a| = |x − c |
Let x−b

c−a = z

Since Bracket I is of length (w + z)|c − a| and Bracket II is of length
(1−w)|c − a|, this implies w + z = 1−w or z = 1− 2w (condition 1 on w)
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Golden section search (cont)

Secondly, require scale similarity between iterations - i.e., (b, x , c) is a smaller
scaled version of (a, b, c): z

1−w = w (condition 2 on w)

to be equal

Solving for w given conditions 1 and 2 gives w 2 − 3w + 1 = 0; or
w = 0.38197 (called golden mean)

Continue until reaching tolerance in size of bracket (difference bet outer
bounds)

Convergence linear in sense of rate at which bracket size decreases (see above
ratio)
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Two-point boundary value problems

Optimal control problems for Mayer functionals are often best solved using
QN or CG methods

For Mayer functionals, there is no way to express ū(t) as implicit function of
x(t), φ(t)

For Lagrange or Bolza functionals, we write ū(t) = g(x(t), φ(t)) and then
integrate x , φ odes in terms of known x(0) and unknown φ(0)

Mathematically this is known as a system of differential equations with split
boundary conditions or a two-point boundary value problem

Even if we have analytic solutions for x(t) and φ(t), if the state/costate odes
are coupled, we cannot solve for the unknown integration constants in a
single step
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Two-point boundary value problem: example

Numerically, we cannot just propagate the system of equations forward from
a single x(0), φ(0) to obtain the solution

This circumstance arises when, upon substitution of the implicit expression
for the control in terms of x(t), φ(t), we obtain a coupled system of odes
called a PMP-Hamiltonian dynamical system.

Consider the following generic example of a scalar linear control system,
whose PMP-Hamiltonian system is also linear:[

dx
dt
dφ
dt

]
=

[
a b
c d

] [
x(t)
φ(t)

]
:= A

[
x(t)
φ(t)

]
with x(0) given, and φ(T ) = ∇xF (x(T )).

This problem can be solved analytically but we will use it to illustrate the
general numerical shooting approach.
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Numerical methods for two-point boundary value problems:
shooting method

The shooting method (iteratively) converges upon the target φ(T ) vector by
making successive changes in the initial conditions φ(0); i.e., it shoots from
x(0), φ(0), trying to hit the terminal boundary conditions φ(T )

Numerical algorithms for shooting are typically based on a combination of (i)
the Newton-Raphson method; and (ii) the Runge-Kutta ODE integration
method.

RK is used to integrate the state/costate ODEs at each step, given x(0) and
guess for φ(0) vectors

NR is used to solve for the roots of the boundary condition equations, i.e.,
φ(T )− φf = 0 Call these fi and let φi (0) = ci ; then NR step is,
δc = λJ−1F (c), where the elements of the Jacobian are Jij ≡ ∂fi

∂cj
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Shooting method (cont)

Each iteration of NR (function evaluation) requires the integration of the 2n
state, costate ODEs by RK

QN is typically not used since would require taking additional derivatives in
order to obtain gradient conditions rather than root conditions; do not have
analytic derivatives. QN updates cannot be applied to Jacobian.

For Lagrange-type costs, the n unknown terminal boundary conditions are on
x(T ), not φ(T ), but procedure otherwise same

Stepsizes λi typically determined by polynomial line search

Shooting can be applied to either Lagrange or Bolza functionals
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Analytical methods for two-point boundary value problems

For linear control systems, the elements of the Jacobian ∂fi
∂φj (0) (columns of

the Jacobian matrix ∂f
∂φj (0) ) can be identified analytically

This provides further insight into the shooting method

The method of unit solutions is used for this purpose

Method of unit solutions for solving linear two-point boundary value problems
relies on the principle of superposition: the notion that any solution to
homogeneous system of linear differential equations can be represented as a
linear combination of a complete set of basis functions (linearly independent
solutions).
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Method of unit solutions

Integrate PMP-Hamiltonian system using initial conditions x(0) = xinit and
φ(0) = 0; call resulting solution x0(t), φ0(t). In order to obtain n unknown
initial conditions φ(0):

Integrate with n initial conditions
φi (0) = 1, φj(0) = 0, j 6= i ; xi (0) = 0, i = 1, · · · , n. Call the resulting solns
x i (t), φi (t).

Write the general solution as linear combination

x(t) = x0(t) +
∑
i

cix
i (t)

φ(t) = φ0(t) +
∑
i

ciφ
i (t)

note x0(t) will contain known initial conditions xinit

By setting φ(T ) = ∇xF (x(T )), solve for the unknown coefficients ci = φi (0)

For linear control systems, the φi (t) are the columns ∂f
∂φi (0) and the Jacobian

is constant; hence NR should converge in approximately 1 step

Complete the solution by plugging the ci into expressions for x(t), λ(t), u(t)



Method of unit solutions: scalar example

Assume we have integrated the general scalar linear PMP-Hamiltonian
system introduced above, without application of the initial conditions on x(t)
or (unknown) terminal conditions on φ(T ).

Method of unit solutions: (i) Write the solution with x(0) = xinit , φ(0) = 0,
call it [x0(t), φ0(t)]T ; then write solution with x(0) = 0, φ(0) = 1, call it
[x1(t), φ1(t)]T . Then we can express the true solution as[

x(t)
φ(t)

]
=

[
x0(t)
φ0(t)

]
+ c

[
x1(t)
φ1(t)

]
.

Here, f = φ0(T ) + cφ1(T )−∇xF (x(c ,T )), which is linear fn of c . The
Jacobian is simply ∂f

∂c = φ1(T ).

Numerically, guess a value for c , solve for x(c ,T ) from the 1st row of the
vector equation above, solve for copt according to copt = c − J−1f (c).

So, the linearity of the control system has enabled application of the principle
of superposition, which in turn leads to the linearity of the optimization
problem.



Self-consistent iterative algorithms: formulation

A common optimization strategy for Bolza functionals is the use of so-called
iterative algorithms that are based on the PMP.

An initial guess for u(t) (denoted ũ0(t)), is used to integrate the dynamical
equation forward starting from initial condition x0, and the costate equation
backward from final condition ∇x(T )F (x(T )); these steps are iterated
self-consistently.

For a quadratic cost on the control (for other costs the implicit expression for
u(t) will change)

dxk(t)

dt
= f (x(t), ũk(t)), x(0) = x0

dφk+1(t)

dt
= ∇x(t)H(xk(t), φk+1(t), uk+1(t)), φk+1(T ) = ∇x(T )F (xk(T ))

uk+1(t) =
∂

∂u(t)
〈φk+1(t), f (xk(t), uk+1(t))〉

ũk+1(t) =
∂

∂u(t)
〈φk+1(t), f (xk+1(t), uk+1(t))〉

until convergence.
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Introduction to stochastic search algorithms

Deterministic search algorithms based on the gradient or Hessian may be
trapped in local optima of the objective function

The number of local optima typically increases with the dimensionality of the
parameter space, the nonlinearity of the objective function and constraints on
the objective function

Unlike deterministic algorithms, stochastic search algorithms (SSA’s) do not
rely on derivatives of the objective function, but rather only on the function
itself

SSA’s are thus less prone to being trapped in local optima, though they may
converge slowly

SSA’s use a family of “walkers” that randomly traverse the parameter space,
accepting or rejecting moves based on comparison of objective function
values at different points

Depending on the ruggedness of the objective function, either deterministic,
hybrid deterministic/stochastic, or stochastic algorithms may be used
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Expectation, (co)variance, correlation

A random variable is a map M : X → R, where X is called the sample or
state space

Expectation of a random variable: E[a] = 〈a〉 =
∫
A

ap(a) da

Sample mean:
∑N

i=1
ai
N

Covariance of random variables a and b:
∫
A

∫
B

(a− 〈a〉)(b− 〈b〉)p(a, b) da db
The covariance matrix of a multivariate random vector x (sample space is
vector space) is

E[(x − 〈x〉)(x − 〈x〉)T ] =

∫
X

(x − 〈x〉)(x − 〈x〉)Tp(x)dx

Correlation of random variables a and b: Cor(a,b) = Cov(a,b)√
Var(a)

√
Var(b)

. I.e., a

“normalized” covariance. Sample correlation:∑
i

(ai−ā)(bi−b̄)

N
√∑

i (ai−ā)2/N
√∑

i (bi−b̄)2/N
.

Prof. Raj Chakrabarti CHE 597: Introduction to Quantum Control Engineering May 14, 2014 211 / 334



Statistical (in)dependence and conditional distributions

Joint distribution of random variables a and b: p(a, b)

Independently distributed: p(a, b) = p(a)p(b)

Independently and identically distributed: p(a, b) = p(a)p(b) = p(a)p(a)

Conditional distribution of random variable a given b: p(a|b) = p(a,b)
p(b)

Marginal (unconditional) distribution of random variable a (in a multivariate
distribution):

∫
B

p(a, b) db

Bayes’ rule: p(a|b) = p(b|a)p(a)
p(b)
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Stochastic processes: definitions

A stochastic sequence (discrete time stochastic process) is a sequence
(indexed set) of random variables, i.e. x(ti ), i = 1, 2, 3, · · · , where each x(ti )
is a random variable and where the index set is countable.

A continuous time stochastic process is one where the index set is
uncountable (e.g., t ∈ [0,T ]).

Prof. Raj Chakrabarti CHE 597: Introduction to Quantum Control Engineering May 14, 2014 214 / 334



Stochastic processes (cont)

Stationary (ergodic) stochastic process: p(x(t)) = p(x(t ′)) ≡ π(x),∀t ≥ t ′;
there is a unique unconditional distribution, which is called the stationary
distribution, to which the unconditional density converges over time.

Nonstationary stochastic process: may be different distribution functions
p(x(t)) at different times t: no unique unconditional distribution.

Autocovariance:

Ex [(x(t)− Ex [x(t)])(x(t ′)− Ex [x(t ′)]] =∫
X

∫
X

(x(t)− 〈x(t)〉)(x(t ′)− 〈x(t ′)〉)p(x(t), x(t ′)) dx(t) dx(t ′), t ≥ t ′

Autocorrelation:

Ex [(x(t)− 〈x(t)〉)(x(t ′)− 〈x(t ′)〉)]/σ(x(t))σ(x(t ′)) =∫
X

∫
X

(x(t)− x̄(t))(x(t ′)− x̄(t ′)p(x(t), x(t ′)) dx(t) dx(t ′)

σ(x(t))σ(x(t ′))
, t ≥ t ′



Stochastic processes (stationary)

For a sp that has converged to stationarity, joint distribution p(x(t), x(t ′))
only depends on t − t ′

An ergodic sp can also be represented by an ensemble of chains; at any given
time this ensemble is characterized by an unconditional distribution function
p(x(t)) (frequency of walkers in state x at time t), which may not be the
stationary distribution, depending on each chain’s initial state x(t0)

White noise stationary sp: autocorrelation 0 for all t ′ 6= t; for Gaussian white
noise, conditional and unconditional probabilities equal, i.e.,
p(x(t)|x(t ′)) = p(x(t)), t ≥ t ′
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Markov chains

For algorithms, we will be most interested in discrete time sp’s

A general (discrete time) vector autoregressive process of order n can be
written: x(ti+1) = A1x(ti ) + A2x(ti−1) + · · ·+ Anx(ti−n+1) + Qu(ti+1)
ui+1 denotes a zero-mean n-variate white noise, and QQT = QTQ denotes
the covariance matrix if u(ti ) each have unit standard deviation

A Markov process is a discrete time autoregressive process of order 1
(compare first-order deterministic differential equation), i.e.,
x(ti+1) = Ax(ti ) + Qu(ti+1)(this equation is called a stochastic difference
equation).

A Markov chain path is a sequence of points (x(t1), ..., x(tm)) (draws)
corresponding to a Markov process.

In general a Markov process is not stationary

From here on, we will use the notation x(ti ) ≡ xi (note we are not referring
to vector component indices with this subscript)

Prof. Raj Chakrabarti CHE 597: Introduction to Quantum Control Engineering May 14, 2014 218 / 334



Markov chain transition rules, matrices

For Markov chains on discrete state spaces, a transition matrix defines the
conditional probability of the various possible states at time t = i + 1
depending on the state at time t = i .

An example of a transition probability matrix (also called a stochastic matrix)
for a 3-d state space is:

P =

 0.5 0.5 0.25
0.25 0 0.25
0.25 0.5 0.5


The transition matrix must have columns summing to one, and operates on
either state vectors or probability vectors (those with elements summing to
one).

For a discrete state space, a state vector is of the form x = (0, · · · , 1, · · · , 0)T

Eigenvectors and eigenvalues of P are important for characterizing dynamics:
these need not be probability vectors.
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Chapman-Kolmogorov equation

When P operates on a state vector, the result is a conditional probability
:Pxi = P(xi+1|xi ); when P operates on an (unconditional) probability vector,
the result is an unconditional probability: Pp(xi ) = p(xi+1)

This is called the Chapman-Kolmogorov equation for evolution of the
marginal distribution associated with a stochastic process

For Markov chains on continuous state spaces (supports), we have a
transition rule which takes the form of a function p(x1|x2); the requirement
of columns summing to one is equivalent to

∫
X

p(x1|x2) dx1 = 1

For continuous state space:

p(xn) =

∫
X

p(xn|xn−1)

∫
X

p(xn−1|xn−2) · · ·

· · ·
∫
X

p(x1|x0) p(x0)dx0 · · · dxn−2 dxn−1

For discrete state space: p(xn) = Pnp(x0), with Pn a stochastic matrix



Sufficient conditions for ergodicity

Compare the Kolmogorov equation to the action of the discrete time
dynamical propagator for deterministic dynamical systems (e.g., quantum
systems): U(tn) = V (tn−1)V (tn−1) · · ·V (t0). Recall each V (ti ) is identical
for a time-independent Hamiltonian; compare Pn.

Conditions (on P) for ergodicity:

1 Irreducible: P has one unit eigenvalue λ1 = 1 (unique stationary distribution)
2 Aperiodic: P does not have any eigenvalues λ = −1 (equilibria are stable, so

system does not oscillate between states in infinite time limit).



Sufficient conditions for ergodicity: continuous
distributions

It can be shown that any scalar Markov process whose stochastic difference
equation is xi+1 = axi + qui+1 with |a| = 1 is nonstationary (random walk),
with a = 1 violating irreducibility and a = −1 violating aperiodicity;
moreover, a sufficient condition for ergodicity is that |a| < 1.

For continuous state spaces (still discrete time), transition operator is an
integral operator and its eigenvalue spectrum (hence convergence rate) is
more difficult to determine analytically.

a is generally not directly known

However, there is a convenient condition for stationarity expressed in terms of
the transition probabilities p(xj |xi ) and the unconditional distribution π(x).

Any Markov chain that satisfies the detailed balance condition
p(x2|x1)π(x1) = p(x1|x2)π(x2), where π(xi ) denotes the stationary
distribution and p(x2|x1) denotes an element of the transition matrix
(transition probability for continuous state spaces), is ergodic.



Sufficient conditions for ergodicity (cont)

The detailed balance condition implies

p(x2) =

∫
X

p(x2|x1)π(x1) dx1 = π(x2)

∫
X

p(x1|x2) dx1 = π(x2)

for continuous state space, i.e., if the unconditional distribution for x at time
t = 1 was π(x), then the unconditional distribution at time t = 2 is also π(x)

This shows π(x) is an eigenvector of the transition probability operator with
eigenvalue 1; we will not prove convergence to this distribution

Convergence to stationarity occurs in the infinite time limit for continuous
state spaces; for discrete state spaces, convergence can occur in finite time:
need Pnp(x0); then columns of Pn are nothing but the stationary distribution
π(x) and Pn+1 = PPn = Pn.



Autocorrelation of stationary Markov processes

Since E[xi−1ui ] = E[xi−1]E[ui ] = 0, for a Markov process that has converged
to stationarity the 1st-order autocorrelation function (omitting the means and
scale factors)

E[xT
i xi−1] = E[(Axi−1 + Qui )

T xi−1]

= E[(Axi−1)T xi−1] + E[(Qui )
T xi−1]

= E[(Axi−1)T xi−1]

In the scalar case, with |a| < 1, for the k − th order autocorrelation function
(lag k), we have

E[xixi−k ] = ak−1E[xi−k+1xi−k ] = akE[x2
i−k ]

; i.e. the acf decays geometrically with k (time)

Note that for a stationary Markov process, lim
k→∞

acf (ti − ti−k) = 0.



Stationary Markov process: mixing rate

For a stationary Markov process, we have lim
i→∞

p(xi ) = π(x).

The mixing rate of a Markov process is the rate at which the limit is
approached

The critical value of k at which the acf decays to approximately 0 is related
to the mixing time for the Markov process

Note that the decay of the autocorrelation function with lag depends only on
a, but the mixing time also depends on the noise/error term ui since that also
contributes to the eigenvalue spectrum of the transition operator P

But, by estimating the autocorrelation function numerically, one can obtain
insight into the mixing rate/time
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Monte Carlo sampling: introduction

The simplest stochastic search algorithm is Monte Carlo (MC) sampling

MC methods integrate or optimize functions based on a) generation of
random points in the parameter space b) incorporation of these points into
the integral or search trajectory based on the function values at those points

a) is achieved by sampling from a proposal distribution

In the Metropolis algorithm (discussed further in 2nd half of term), the
proposal distribution is (typically) a function of the difference between the
current point and the previously sampled point, i.e., q(xi+1 − xi ); a typical
form is q(xi+1 − xi ) = 1√

2π
exp[− 1

2 (xi+1 − xi )
2].

The aim of MC is to sample, through correlated sequential draws, from a
stationary unconditional distribution π(x) that is otherwise difficult for
impossible to sample
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Metropolis-Hastings MC sampling

In Metropolis-Hastings sampling, the acceptance probability of a move
x1 → x2 is

α(x1, x2) = min

[
1,
π(x2)q(x1|x2)

π(x1)q(x2|x1)

]
(Metropolis sampling omits the factor q(x1|x2)

q(x2|x1) , which = 1 for a symmetric

proposal distribution)

A common choice for π(x) is exp{− 1
kT f (x)} where β = 1

kT is an adjustable
parameter called the inverse temperature in analogy with thermodynamics;
thus obtain

min

[
1, exp{− 1

kT
[f (xi+1)− f (xi )]}

]

The M-H transition probability p(x2|x1) = q(x2|x1)α(x1, x2) satisfies the
detailed balance principle and hence the chain converges to stationarity
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Metropolis-Hastings MC sampling satisfies detailed balance

Need to show π(x1)p(x2|x1) = π(x2)p(x1|x2)

We have p(x2|x1) = q(x2|x1)α(x1, x2)

π(x1)q(x2|x1)α(x1, x2) = min [π(x1)q(x2|x1), π(x2)q(x1|x2)]

= min [π(x2)q(x1|x2), π(x1)q(x2|x1)]

= π(x2)q(x1|x2)α(x2, x1)
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Monte Carlo sampling as an optimization algorithm

With fixed β, Metropolis MC chains converge to draws from the stationary
distribution π(x) = exp{−βf (x)}

Lower β drive the search towards lower values of f (x); higher β increase the
probability of transitions to higher values of f (x)

There is thus a finite probability of escaping local optima while minimizing
f (x) for MC search, unlike gradient-based optimization

Can be used on either discrete or continuous parameter spaces, unlike
gradient optimization

Test whether the system has reached equilibrium/stationarity at given β by (i)
(if running one chain) checking geometric decay of autocorrelation function;
(ii) (if running m multiple chains in parallel) comparing unconditional
variance σ2 of each parameter xi : σ

2
xi = 1

n

∑
i (xi − x̄i )

2 within a chain to that

between chains indexed by j : n
m

(
x̄ j
i −

1
m

∑
j x̄ j

i

)2

. At stationarity, they

should be approximately the same for runs with large number of iterations n.

Latter method helps assess convergence to stationary distributions with
multiple peaks. Early on, within-chain variance will be smaller than (scaled)
between-chain variance because of high correlation between successive steps
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Simulated annealing

Convergence to the stationary distribution can be extremely slow for
multimodal stationary distributions π(x) (equivalently, functions f (x) with
multiple local optima when using π(x) = exp{−βf (x)})

MC simulated annealing mimics the process of “slow cooling” that nature
uses to escape local optima in molecular energy functions

Simulated annealing either a) gradually increases β (lowers T ) over a range
[β2, β1]; or b) repeatedly cycles β between [β2, β1]

Equilibrate at each β

Can run multiple walkers in parallel from random initial guesses, discarding
those at each temperature that display low variance (indicative of traps)

Do not artificially select walkers based on their values of the objective
function f (x), since the function may be rugged and we only want to
encourage thorough sampling of the landscape; walks are already “biased”
toward lower values of f

Assess convergence to global maximum / stationary distribution by (i)
number of times same local maxima are resampled, starting from different
initial conditions (different chains); or (ii) comparing between- and
within-chain variances (which should gradually align with cooling)
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Setting the proposal covariance matrix

The proposal distribution
p(xi+1 − xi )

is typically taken to be a multivariate normal distribution.

A general multivariate normal distribution can be written

p(x) = C exp

[
−1

2
(x − 〈x〉)TΣ−1(x − 〈x〉)

]
where Σ denotes the N × N covariance matrix, 〈x〉 denotes the mean vector,

x denotes the vector of random variables, and C =
(

1
2π

)n/2 |Σ|− 1
2

For the Gaussian proposal distribution, 〈x〉 is taken to be the current
parameter vector



Numerical methods for sampling from probability
distributions

Transformation methods for drawing from nonstandard pdf p(y) rely on
choosing function x = f (y) and drawing from p(x)

Since infinitesimal area element under each pdf must be conserved,
p(y)dy = p(x)dx or p(y) = p(x) dx

dy ; choice of p(x) specifies f (y)

Let p(x) = U(0, 1) (uniform distribution between 0 and 1); what is f (y)?

Then p(y) = dx
dy ; and x = P(y), where P(y) is indefinite integral of p(y)

Then y = P−1(x); draws from U(0, 1) can be converted to draws from p(y)
if P−1(x) can be computed
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Numerical methods for sampling from multivariate
probability distributions (cont)

For multivariate distributions p(y1, · · · , yn), let x = f (y) denote a system of
n nonlinear equations in the yi

Then p(y1, · · · , yn) = p(x1, · · · , xn) |J(y)|, where the determinant of the
Jacobian of the transformation (Jij = ∂xi

∂yj
) represents the scaling factor for

transformation of volume elements dx1, · · · , dxn; dy1, · · · , dyn.

Simplfies when f is linear transformation
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Sampling from the multivariate Gaussian proposal
distribution

Two approaches can be used to draw from such a distribution
(transformation methods): (i) Cholesky decomposition, Σ = QQT (Q is
lower triangular for any symmetric Σ; possibly on homework), with
Xi+1 = Xi + Qui , where ui is a multivariate Gaussian “white noise” process
with unit variance, or (ii) eigenvector decomposition Σ = OΣ̃OT , with
X̃i+1 = X̃i + vi , where vi has variances equal to the diagonal elemetns of Σ̃,
followed by rotation back to the original basis

Note that here, only a linear transformation of x is necessary since it is
possible to sample directly from univariate Gaussians
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Rejection sampling

Choose a “comparison function” f (x) ≥ p(x)

Use transformation method to sample x from f (x) using uniform sampling of
x

Draw uniformly in interval [0, f (x)] and accept if below p(x), reject if above
p(x)

Above method is equivalent to sampling from p(x), although may be
computationally inefficient based on how close f (x) and p(x) are
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Setting the proposal covariance matrix (cont)

The covariance Σ, and hence Q, can be set “adaptively”: let Sn denote the
sample covariance matrix over the last n steps; then let
Σnew = αΣold + (1− α)Sn

This allows the algorithm to “learn” the topography of the landscape by
favoring trial moves that step in the directions that have been accepted
previously

This method can be used to facilitate convergence; if the autocorrelation
function is decaying too slowly,

Note that this adaptation constitutes control of the evolution of the
stochastic difference equation (to accelerate the evolution of the Kolmogorov
system to a fixed point) by modulation of the noise term
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Setting the annealing schedule

Compute the heat capacity to determine the ideal annealing (cooling)
schedule, based only on statistics at current temperature T :

C (T ) =
d

dT
〈E 〉(T )

=
d

dT

[∑
i Ei exp(−Ei/kT )∑

i exp(−Ei

kT )

]

=
1

Z 2

[
1

T 2

∑
i

Ei exp(−Ei/kT )(
∑
i

exp(−Ei/kT ))−

−
∑
i

Ei exp(−Ei/kT )
d

dT

∑
i

exp(−Ei/kT )

]
=

1

T 2
[〈E 2〉 − 〈E 〉2]

If the heat capacity is sharply rising between successive temperatures, reduce
the annealing rate to avoid becoming trapped in a local optimum.
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Observability of time-variant linear systems

Consider the time-variant linear system dx
dt = A(t)x(t) in the absence of

control, with formal solution x(t) = U(t)x0

Consider a linear observer y(t) = C (t)x(t) = C (t)U(t)x0, where C (t) is
m × N

The aim is to solve for x0 by making m observations y(t) at each time t

To obtain a sufficient condition for this solution to exist, left-multiply the
observation equation by UT (t)CT (t) and integrate over all time:∫ T

0

UT (t)CT (t)y(t) dt =

∫ T

0

UT (t)CT (t)C (t)U(t) dt x0

Let H(T ) =
∫ T

0
UT (t)CT (t)C (t)U(t) dt; note it is an N × N Gramian

matrix. Now solve for x0:

x0 = H−1(T )

∫ T

0

UT (t)CT (t)y(t) dt

H is called the observability Gramian matrix.



Observability of time-invariant linear systems: rank
condition

Observability: Does there exist an observation sequence y(t), 0 ≤ t ≤ T ,
such that we can identify any x(0)? (note duality between controls (inputs)
and observations (outputs))

Consider the time-variant linear system dx
dt = Ax(t) in the absence of control,

with formal solution x(t) = U(t)x0, with Bolza cost

J =
∫ T

0
xT (t)Qx(t) dt + 1

2 xT (T )S(T )x(T ), Q > 0 and QT = Q (the reason
for notation S(T ) for endpoint weighting matrix will become clear below)

dx

dt
= Ax

dφ

dt
= −Qx − ATφ

Solve formally for φ(t):

φ(t) = exp[AT (T − t)]φ(T ) +

∫ T

t

exp[AT (T − t ′)]Q exp[AT t ′]x(t) dt ′

φ(0) = exp[ATT ]φ(T ) +

∫ T

0

exp[AT t ′]Q exp[At ′]x(0) dt ′



Observability of time-invariant linear systems: rank
condition

dx

dt
= Ax

y =
√

Qx

=
√

Q exp(At)x0

φ(0) = exp[ATT ]φ(T ) +

∫ T

0

exp[AT t ′]Q exp[At ′]x(0) dt ′

x(0) =

[∫ T

0

exp[ATt ′]Q exp[At ′] dt ′

]−1 [
φ(0)− exp[ATT ]φ(T )

]
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Observability of time-invariant linear systems: rank
condition (cont)

Compare BR−1BTλ for Bu: now
√

Q
T√

Qx ; express in terms of y =
√

Qx :√
Q

T
(
√

Qx)

m-component vector y is nothing but analog (dual) of control vector u

dφ

dt
=
√

Q
T

y + ATφ

Formally,

φ(0)− exp[ATT ]φ(T ) =

∫ T

0

exp[AT t]
√

Q
T

y(t) dt

=

∫ T

0

exp[AT t]
√

Q
T√

Qx(t) dt,

although actual reconstruction of x(0) requires measurement outcomes y(t);
φ formulation useful only for observability assessment
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Observability of time-invariant linear systems: rank
condition (cont)

Setting φ(T ) = 0,

φ(0) = CT

∫ T

0

a0(t ′)y(t ′) dt ′ + ATCT

∫ T

0

a1(t ′)y(t ′) dt ′ + · · ·+

+ (AT )N−1C

∫ T

0

∫ T

0

aN−1y(t ′) dt ′

Since for linear systems there is a one-to-one correspondence between φ(0)
and x(0) (see above), if this equation can be solved for y(t) the system is
observable
Can write as
[CT ,ATCT , · · · , (AT )N−1CT ][

∫ T

0
a0(t ′)y(t ′) dt ′, · · · ,

∫ T

0
aN−1(t ′)y(t ′) dt ′]T

(note latter is Nm-dim vector since y is m-dim)
The N × Nm observability matrix is [CT ,ATCT , · · · , (AT )N−1CT ]. If it is
nonsingular (has N linearly independent rows/columns; or N nonzero singular
values; or rank is N), the system is fully controllable since we can solve for
y(t) from this system of equations and independently identify all elements of
x(0)
Check rank condition by singular value decomposition of observability matrix
(matrix is square only for one component observation vector)
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Consistency, invariance and asymptotic normality

Consistency: An estimator θ̂m is consistent for the parameter θ (written as
plim θ̂m = θ0) if for every ε > 0,

lim
m→∞

Pθ
{
|θ̂m − θ0| ≥ ε

}
= 0.

Invariance: For an invariant estimator, c(θ) is c(θ̂m), for a continuous and
continuously differentiable function c(·).

Asymptotic Normality. For a sequence of estimators θ̂m, if

km
(
θ̂m − θ0

)
d→ N(0,Σ) as m→∞, where

d→ denotes convergence in

distribution and km is any function of m, θ̂m is said to be
√

km-consistent for
θ and has an asymptotic normal distribution with asymptotic covariance
matrix Σ.



Least squares parameter (state) estimation

Extending our discussion of observability; goal is to: estimate (parameters of)
state x in presence of noise/random measurement outcomes, based on m
measurements

Again use deterministic observation law

y = Cx

(mean observation law), but now assume m × N matrix C has m ≥ N
(enables estimation of all parameters) and add noise such that

z = y + w = Cx + w ,

with w a m-dimensional Gaussian noise vector; z = Cx + w is now the
stochastic observation law

Note C is in general not a change of basis even if N × N since not necc
orthogonal (i.e. CCT 6= I )



Least squares parameter estimation (cont)

If m measurements are iid, matrix C has identical rows and pdfs of wi ’s are
identical, and no covariance/correlation between measurement outcomes

Let x̂ denote the estimated state; minimize least squares objective function of
error residuals (sum of squared measurement errors over all state
parameters/components)

J =
1

2
(z − C x̂)T (z − C x̂)

Note this only incorporates information about means yi of observations
through C , no other information about probability distributions (pdfs) of w
components; thus we can only obtain parameter estimates x̂ (means of
estimate distributions if estimator unbiased), but not their uncertainties

Set dJ
dx̂ = 0 for minim; solve for x̂

dJ

dx̂
=

d

dx̂

1

2
(zT z − zTC x̂ − x̂TCT z + x̂TCTC x̂)

= −1

2
(CT z + CT z) + CTC x̂ = 0

x̂ = (CTC )−1CT z



Thus state estimate is
x̂ = (CTC )−1CT z

(CTC )−1CT is called left pseudoinverse of C : compare (ATA)−1AT = A−1

for square A; result would be same if we had deterministic measurements (no
noise) and we solved for x from Cx = z ; estimator minimizes mean square
error between estimates x̂i and corresponding measurement outcomes
(CTC )−1CT z + wi across all i

Note CTC must be full rank (rank N);

For nonlinear observer (nonlinear least squares) must generally solve for
minimum of J numerically; application of optimization to estimation
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Weighted least squares estimation

Incorporates information about variances of observations (e.g., if pdfs of wi

known) in order to provide (estimate of) (co)variance of parameter estimates
x̂i : Σ = E[(x − x̂)(x − x̂)T ]

Measurement residual covariance matrix (m ×m): R = E[wwT ], assuming
zero mean; note if this matrix has nonzero off-diagonal elements, the
measurements are correlated and hence not independent (and not iid)

Each measurement zi/wi has different pdf (assumed to be Gaussian) with
variance Rii , and covariance between wi ,wj is Rij = Rji

For weighted least squares objective fn, let J = 1
2 (z − C x̂)TR−1(z − C x̂);

provides greater weights to measurements with lower variances in providing
parameter estimates and estimator minimizes weighted mean square error
between estimates C x̂i and corresponding measurement outcomes zi where
weights are proportional to (co)variances



Weighted least squares estimation

Setting dJ
dx̂ = 0 and solving

dJ

dx̂
=

d

dx̂

1

2
(zTR−1z − zTR−1C x̂ − x̂TR−1CT z + x̂TCTR−1C x̂)

= −1

2
(CTR−1zT + CTR−1zT ) + CTR−1C x̂ = 0

x̂ = (CTR−1C )−1CTR−1z

Thus state estimate is x̂ = (CTR−1C )−1CTR−1z ; the matrix left multiplying
z is called the weighted left pseudoinverse of C

R is consistently estimated by sample covariance of measurements
(residuals); in simplest case is diagonal matrix of inverse weights when
measurements uncorrelated; but note this requires



Weighted least squares estimation (cont)

We obtain an estimate of the covariance matrix of the parameter estimates
as well:

Σ̂ = (CTR−1C )−1,

since (Σ̂)−1 = CTR−1C ; note if C is N × N identity matrix (each
measurement provides information on exactly one parameter), Σ̂ = R

If the pdfs of wi are Gaussian, and R is the true covariance matrix, then we
obtain the true covariance matrix of parameter estimates from
Σ = (CTR−1C )−1

Note that if the pdfs of wi are Gaussian, all information about them is
included within the means yi and the (co)variances Rij ; but if not,
information about the stochastic observation law is lost
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Dynamic (recursive) linear least squares estimation

Now consider successive measurement “sets” z1, z2 (indexed by time); and,
where the measurement errors and observation law is changing between sets;
for our purposes will assume m measurements (e.g. z1) all made at time t1,
though need not be iid

As before x̂1 = (CTR−1
1 C )−1CTR−1

1 z1; update to x̂2 with measurement set
z2; x̂2 estimate obtained using all info, but weighting t1 and t2 measurements
appropriately

Again formulate least squares objective

J =
1

2
[z1 − C1x̂2, z2 − C2x̂2]

[
R−1

1 0
0 R−1

2

] [
z1 − C1x̂2

z2 − C2x̂2

]
Write dJ

dx̂ = 0: by direct extension of above, obtain

x̂2 = (CT
1 R−1

1 C1 + CT
2 R−1

2 C2)−1(CT
1 R−1

1 z1 + CT
2 R−1

2 z2);

We are interested in how to update state estimate given new info; hence
want x̂2 in terms of x̂1
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Dynamic (recursive) linear least squares estimation

(CT
1 R−1

1 C1 + CT
2 R−1

2 C2)−1 = (Σ−1
1 + CT

2 R−1
2 C2)−1

Apply variant of Sherman-Morrison matrix inversion lemma; recall

(A + u ⊗ v)−1 = A−1 − (A−1u)⊗(A−1v)
1−vTA−1u

Here,

(A + BTC−1B)−1 = A−1 − A−1BT (BA−1BT + C )−1BA−1

Thus

(Σ−1
1 + CT

2 R−1
2 C2)−1 = Σ1 − Σ1CT

2 (C2Σ1CT
2 + R2)−1C2Σ1

so

x2 = [Σ1 − Σ1CT
2 (C2Σ1CT

2 + R2)−1C2Σ1](CT
1 R−1

1 z1 + CT
2 R−1

2 z2)



Dynamic (recursive) linear least squares estimation

Multiplying the terms in the left bracket with the first term on the right,
obtain x̂1 − Σ1CT

2 (C2Σ1CT
2 + R2)−1C2x̂1

Let Σ1CT
2 (C2Σ1CT

2 + R2)−1 ≡ K2; thus have x̂1 − K2C2x̂1

Doing the same with the second term in the right bracket gives K2z2

Thus the recursive least squares state estimate update is
x̂2 = x̂1 + K2(z2 − C2x̂1); K2 is called the Kalman gain for the estimator;
updates estimate based on new observations z2

In continuous time obtain dx̂(t)
dt = K (t)(z(t)− C (t)x̂(t)) for a constant state

vector that is measured with time-varying error and observation law
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Propagation of the state and covariance estimates
(without new observations)

Assume we have state estimate x̂(0) and associated covariance matrix of
state estimates Σ(0)

Now turn on noisy linear dynamics governed by

dx

dt
= Ax(t) + Bu(t) + Dn(t)

where n is a N-dimensional white noise vector with covariance matrix
E[nnT ] = Q (note this Q differs from that used in observability analysis)

How are the state estimates and covariance matrix propagated through time
given these dynamics? Want x̂(t) and Σ(t)



Propagation of the state and covariance estimates
(without new observations)

x̂(t) follows directly from our formal solution to linear vector ode:

x̂(t) = exp(At)x̂(0) +

∫ T

0

exp[A(t − t ′)]Bu(t ′)dt ′+

E

[∫ T

0

exp[A(t − t ′)]Dn(t ′)dt ′

]

= exp(At)x̂(0) +

∫ T

0

exp[A(t − t ′)]Bu(t ′)dt ′

For covariance update, omit control for now for simplicity

Σ(t) = E[(x(t)− x̂(t))(x(t)− x̂(t))T ] =

= E

{[∫ T

0

exp[A(t − t ′)]Dn(t ′)dt ′ + exp(At)(x(0)− x̂(0))

]

∗

[∫ T

0

exp[A(t − t ′)]Dn(t ′)dt ′ + exp(At)(x(0)− x̂(0))

]T}



Propagation of the state and covariance estimates
(without new observations)

Σ(t) = exp(At)Σ(0) exp(AT t)+

E

{[∫ t

0

exp[A(t − t ′)]Dn(t ′) dt ′
] [∫ t

0

exp[A(t − t ′)]Dn(t ′) dt ′
]T}

E

{[∫ t

0

exp[A(t − t ′)]Dn dt ′
] [∫ t

0

exp[A(t − t ′)]Dn dt ′
]T}

=

=

∫ t

0

exp[A(t − t ′)](Dn)(Dn)T exp[AT (t − t ′)] dt ′

=

∫ t

0

exp[A(t − t ′)]E[DnnTDT ] exp[AT (t − t ′)] dt ′

=

∫ t

0

exp[A(t − t ′)]DQDT exp[AT (t − t ′)] dt ′.
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Propagation of the state estimate (with new observations)

Next time: will look at evolution of state estimate with new observations
z(t):

dx̂

dt
= Ax̂ + K (z − C x̂)

= (A− KC )x̂ + Kz

Note similarity to state feedback form of control law; now using
measurements to update state estimate rather than control the state

Recall: observations are dual to controls
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Filtering: optimal state estimation of dynamical systems

Since the state covariance of a stochastic dynamical system increases with
time of evolution, “optimal” feedback control based on state estimate x̂(t) is
prone to error

Filtering methods update the state estimate and its covariance matrix
optimally based on additional measurements made during evolution; based on
combination of i) state estimate / covariance matrix updates in presence of
measurements, but absence of evolution; ii) state estimate / covariance
matrix updates in presence of evolution, but absence of measurements

Filters can be based on different estimators for the state and its covariance;
we are studying the simplest, the least squares filter

Kalman developed optimal least squares filter for linear dynamical systems
(previously we studied Kalman controllability and observability rank
conditions for linear systems)

Applications
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Recursive least squares estimators: from discrete to
continuous time

Recall

x̂2 − x̂1 = K2(z2 − C2x1);

Σ2 − Σ1 = −K2C2Σ1

R2 in K2 represents effect of instantaneous measurement noise; now let us
assume that noise enters measurement process continuously, building over
time

This is 1st step toward formulating continuous observations/continuous state
update; even though we are still measuring at discrete times we need a
continuous time representation of our noise



Let R(t2) denote the total measurement error (covariance) that has built up
over the interval ∆t due to noise error rate R2; so

R2 →
1

∆t
R(t2)

R−1
2 → R−1(t2)∆t

How to incorporate into expression for Kalman gain:

K2 = Σ1CT
2 [C2Σ1CT

2 + R2]−1

Would be useful to have an expression “proportional” to R−1
2
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Recursive least squares estimators: from discrete to
continuous time

Rewrite K2 in a form “proportional” to the measurement error matrix R2

K2 = Σ1CT
2 [C2Σ1CT

2 + R2]−1

= Σ1CT
2 [(C2Σ1CT

2 R−1
2 + I )R2]−1

= Σ1CT
2 R−1

2 [I + C2Σ1CT
2 R−1

2 ]−1

K2[I + C2Σ1CT
2 R−1

2 ] = Σ1CT
2 R−1

2

K2 = Σ1CT
2 R−1

2 − K2C2Σ1CT
2 R−1

2

K2 = (I − K2C2)Σ1CT
2 R−1

2

By substituting Σ2 = Σ1 − K2C2Σ1 = (I − K2C2)Σ1: we can eliminate K2 on
the rhs and get the form of K2 that we want:

K2 = Σ2CT
2 R−1

2

Making the substitution R−1
2 → R−1(t2)∆t, we obtain the form of the gain

we want:
K (t2) = Σ(t2)CT (t2)R(t2)−1∆t



Recursive least squares estimators: from discrete to
continuous time

Now move to continuous updating of the state estimate by taking lim
∆t→∞

in

K (t2) = Σ(t2)CT (t2)R(t2)−1∆t

lim
∆t→∞

x̂(t2)− x̂(t1)

∆t
= lim

∆t→∞
K (t2)[z(t2)− C (t2)x̂(t1)]

dx̂(t)

dt
= K (t)[z(t)− C (t)x̂(t)]

Similarly, get dΣ(t)
dt = −K (t)C (t)Σ(t)
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Differential equation for state covariance matrix with
propagation but no measurements

Recall without measurements,

Σ(t) = exp(At)Σ(0) exp(AT t)+

+ exp(At)[

∫ t

0

exp(−At ′)DQDT exp(−AT t ′) dt ′] exp(AT t)

Let exp(At)[
∫ t

0
exp(−At ′)DQDT exp(−AT t ′) dt ′] exp(AT t) ≡ H(t). So

dΣ(t)

dt
= A exp(At)Σ(0) exp(AT t)+

exp(At)Σ(0) exp(AT t)AT + AH(t) + H(t)AT + DQDT

= AΣ(t) + Σ(t)AT + DQDT

This is for time-invariant A,D,Q; for time-variant A(t),D(t),Q(t), replace

exp(At) with formal propagator U(t); same form obtained for dΣ(t)
dt but with

time-varying matrices



Differential equation for state covariance matrix with
propagation and measurements

Denote the covariance matrix with measurements but without propagation
(dynamics) Σ1(t) and that without measurements but with propagation
Σ2(t); putting them together and replacing Σ1,Σ2 on the rhs w Σ(t)

dΣ1+2(t)

dt
=

dΣ1

dt
+

dΣ2(t)

dt

= −K (t)C (t)Σ(t) + AΣ(t) + Σ(t)AT + DQDT

= AΣ(t) + Σ(t)AT + DQDT − Σ(t)CT (t)R−1(t)C (t)Σ(t)

with Σ(0) = Σ0; where we have used K (t) = Σ(t)CT (t)R−1(t)

Hence with continuous least squares state estimation, obtain a Riccati
equation rather than a Lyapunov equation

Again, for time-varying linear systems, replace A,D,Q with A(t),D(t),Q(t)
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Differential equation for state estimate with propagation
and measurements

Similarly, we get

dx̂1+2(t)

dt
= Ax̂(t) + K (t)[z(t)− C (t)x̂(t)]

= Ax̂(t) + Σ(t)CT (t)R−1(t)[z(t)− C (t)x̂(t)]

= Ax̂(t) + Σ(t)CT (t)R−1(t)z(t)− Σ(t)CT (t)R−1(t)C (t)x̂(t)
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Kalman filter equations

So the Kalman filter equations for optimal updating of the state estimate and
its error during dynamical evolution of a linear system are

dx̂(t)

dt
= Ax̂(t) + Σ(t)CT (t)R−1(t)z(t)−

Σ(t)CT (t)R−1(t)C (t)x̂(t); x̂(0) = x̂0

dΣ(t)

dt
= AΣ(t) + Σ(t)AT + DQDT−

Σ(t)CT (t)R−1(t)C (t)Σ(t); Σ(0) = Σ0

Kalman filter minimizes state estimate covariance (mean equare error) by
optimally mixing old and new measurements



Duality: Kalman filter equations vis-a-vis linear quadratic
regulator

Compare the Kalman filter equations to those for optimal feedback control of
linear systems to obtain a duality:

dx̂(t)

dt
= A(t)x̂(t) + Σ(t)CT (t)R−1(t)z(t)− Σ(t)CT (t)R−1(t)C (t)x̂(t);

x̂(0) = x̂0

dΣ(t)

dt
= A(t)Σ(t) + Σ(t)AT (t) + D(t)Q(t)DT (t)−

Σ(t)CT (t)R−1(t)C (t)Σ(t); Σ(0) = Σ0

vs

dx(t)

dt
= A(t)x(t)− B(t)K (t)x(t); x(0) = x0

= A(t)x(t)− B(t)R−1(t)BT (t)S(t)x(t)

dS(t)

dt
= S(t)A(t) + AT (t)S(t) + Q(t)− S(t)B(t)R−1(t)BT (t)S(t);

S(T ) = ST



Duality: Kalman filter equations vis-a-vis linear quadratic
regulator

Ignoring the z(t) term, they are dual with the mappings

CT (t)→ B(t)

Σ(t)→ S(t)

x̂(t)→ x(t)

and time reversed for the Riccati equation (in Riccati equation, duality is
more precise with A(t)→ AT (t)).
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Maximum likelihood

MLE vs least squares: in least squares, can only estimate parameters that are
linear functions of the means of the pdfs of the observations; in MLE can
estimate any parameters that specify the pdfs for the observations

yi ’s are means of zi pdfs, σi ’s are variances; can estimate y ′i s and xi ’s (latter
are linear fns of the y ′i s, but not σi ’s, by least squares theory); MLE provides
a theory for estimation of σi ’s as well

Achieves this by maximizing a function of all the parameters (here yi or xi ’s,
σi ’s)

By maximizing the log likelihood, the ML estimator minimizes the
Kullback-Leibler distance between the estimated and true probability
distributions.

Will show how this allows estimation of the variances σ2
i in the expressions

zi = yi + wi , where wi ∼ N (0, σ2
i ) in addition to the means yi
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Likelihood function; necessary conds for lhood

The likelihood function L(θ|z) is the joint density of the sample defined as a
function of the unknown parameter vector θ

Let z = (z1, · · · , zm) be an i .i .d . sample of size m from a population with
probability density function p(z |θ) which depends on the unknown parameter
vector θ whose true value is θ0. Typically, the logarithm of the likelihood
function, ln L(θ|z), is easier to maximize numerically because of its
separability.

The value of the parameter vector that maximizes the (log) likelihood
function is called the ML estimator of θ:

θ̂mML = arg max
θ∈Θ

L(θ|z) = arg max
θ∈Θ

(
m∏
i=1

p(z1|θ) · · · p(zm|θ)

)
,

where Θ denotes the admissible parameter space.
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Asymptotic efficiency of an estimator

Asymptotically efficient. A sequence of consistent estimators θ̂m is asymptotically

efficient if
√

m [θ̂m − θ0]
d→ N [0,mI−1(θ0)] where I (θ) = −E

[
∂2 ln L(θ|z)
∂θ∂θ′

]
;

[I (θ0)]−1 is called the Cramer-Rao lower bound (CRB) for consistent estimators.
In practice, can usually use

Î1(θ̂m) = −

[
∂2 ln L(θ̂m|x)

∂θ∂θ′

]
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Example: MLE of Gaussian distribution parameters

We now show how to apply MLE to the case discussed above for a single
component state vector, observations of which are distributed normally; the
goal is to estimate the mean µ (as done above by least squares, called x1 or
y1 above) and also the variance σ2

1 of the distribution

Parameter estimates: mean µ of Gaussian distribution; first assume σ2 is
known

p(z |µ) =
1√

2πσ2
exp

[
− (z − µ)2

2σ2

]
; L(µ|z) =

m∏
i=1

1√
2πσ2

exp

[
− (zi − µ)2

2σ2

]

ln L =
m∑
i=1

ln
1√

2πσ2
− (zi − µ)2

2σ2

d ln L(µ|z)

dµ
= −

m∑
i=1

zi − µ
σ2

= 0

µ̂ =
1

m

m∑
i=1

zi



Example: MLE of Gaussian distribution parameters (cont)

Parameter estimates: variance σ2; now assume mean µ is known

d ln L(σ|z)

dσ
=

d

dσ

[
m∑
i=1

− ln
√

2πσ2 − (zi − µ)2

2σ2

]
= 0

−m

σ
=

m∑
i=1

(zi − µ)2

σ3

σ̂2 =
m∑
i=1

(zi − µ)2

m

This is just the variance of the observations; note this could not be obtained
directly from least squares theory

If both µ, σ2 were simultaneously estimated, would substitute their estimated
rather than true values in the expressions above
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Example: MLE of Gaussian distribution parameters (cont)

We compute (asymptotic) µ̂ estimator uncertainty based on Fisher
information: [

−d2 ln L(µ|z)

dµ2

]−1

=

[
−

m∑
i=1

− d

dµ

µ

σ2

]−1

=
1

m
σ2

Note this is the same result as that used (though not derived) above in least
squares and also coincides with the variance σ2 of the Gaussian distribution
itself

Also, can show this is equivalent to result obtained from

[(
d2 ln L(µ|z)

dµ

)2
]−1

Could even compute uncertainty in the estimate of σ2

Use MLE for constant state estimation, but we will use LS for dynamic state
estimation because like prev OCT theory minimizes quadratic objective
function and will exploit duality between control and estimation
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Properties of maximum likelihood estimators

1 The ML estimator is consistent: plim θ̂mML = θ0.

2 The ML estimator is asymptotically normally distributed (and asymptotically
efficient):

√
m [θ̂mML − θ0] → N [0,mI−1(θ0)],

where I (θ0) = −E
[
∂2 ln L(θ0|x)

∂θ∂θ′

]
.

3 The ML estimator of θ is invariant; e.g., as in least squares if I estimate xi ’s,
obtain yi estimates via ŷ = C x̂
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The need for numerical algorithms

In the above examples, we were able to solve the score function equations for
the parameter estimates in closed form.

Typically, this is not possible, and the zeroes must be found using numerical
methods.
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Constrained optimization: Lagrange multipliers

Many MLE problems require imposition of constraints on parameters.

Requires constrained optimization, using a Lagrangian function

Denote the vector of parameters (θ, λ, γ) ≡ t. Finding the constrained
optimum corresponding to this Lagrangian entails searching for parameters t
θi and slack variables γj that render the gradient vectors ∇L(θ) and a linear
combination of ∇(aj(θ)− γj), j = 1, ...,N parallel.
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Algorithms for MLE estimation

There are two common approaches to solving this problem:

1 Minimization of the “sum of squares” (of the first-order conditions) function∑
i

(
∂L
∂ti

)2

;

2 Finding the roots of the system of nonlinear equations ∂L
∂t = 0 using the

Newton-Raphson (NR) method.

In fact, methods 1) and 2) may be combined to produce a globally convergent NR
algorithm.
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Newton-Raphson method

The Newton-Raphson method is ideal... Writing ∂L
∂t = H(t), the Newton step for

H(t) = 0

is
tnew = told + δt,

with δt = −J−1H, where Jij = ∂Hi

∂tj
is the Jacobian matrix.
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Denoting the rows of H by Hi , we have: REPLACE W GENERAL FORM

Hi (θ) =
∂L(θ, λ, γ|x)

∂θi
=
∂ln L(θ|x)

∂θi
= 0, 1 ≤ i ≤ N2 − 1,

HN2+j−1(θ) =
∂L(θ, λ, γ|x)

∂λj
= aj(θ) = 0, 1 < j ≤ N − 1,

HN2+N+j−2(λ, γ) =
∂L(θ, λ, γ|x)

∂γj
= 2λjγj = 0 1 < j ≤ N − 1.

In order to faciliate global convergence of the Newton-Raphson algorithm,
the “sum-of-squares” function h = H ·H is evaluated after each iteration,
and the step length progressively shortened until the value of this function is
found to decrease (the existence of such a step length is guaranteed)
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(Provide some further details on NR from Press)
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Feedback control with Bolza functionals

Now consider linear system with nonzero u(t) and cost

J =
∫ T

0
xT (t)Qx(t) + uT (t)Ru(t) dt + 1

2 xT (T )S(T )x(T ) (i.e., unlike the
Lagrange functional with endpoint state constraint used for controllability
analysis, use a Bolza functional with the Lagrange term also containing
quadratic cost on x(t)). The final state is thus not constrained; and the cost
on the state will enable us to formulate time-varying feedback control

By appropriately large weighting of 1
2 xT (T )S(T )x(T ), can drive x(T )

arbitrarily close to desired endpoint, while executing feedback along
trajectory, if system controllable

With T →∞, control system is called linear quadratic regulator (LQR)

In these deterministic feedback control problems, we do not update state
estimates with observations; we assume the state is can be directly measured
at any time t; later we will discuss linear quadratic Gaussian regulator (LQG),
which is stochastic feedback control problem where state must be estimated



Kalman gain

The PMP-Hamiltonian system is:[
dx
dt
dφ
dt

]
=

[
A −BR−1BT

−Q −AT

] [
x(t)
φ(t)

]
with the 2N × 2N matrix denoted the PMP-Hamiltonian matrix H

Recall: to assess controllability, let −Q = 0; to assess observability, let
−BR−1BT = 0

Generalizing the scalar solution, implicitly, optimal control is
ū(t) = −R−1BTS(t)x(t), where we have made the linear ansatz
φ(t) = S(t)x(t)

dx

dt
= Ax(t)− BR−1BTS(t)x(t)

= (A− BK (t))x(t)

K (t) = R−1BTS(t) is called the Kalman gain; it provides (time-varying)
state-dependent feedback to the control

To solve the problem, we need to find the matrix function S(t); we will later
show that S(T ) is the same as that which appears in the cost functional



Asymptotic convergence, Lyapunov functions

Consider the deviation variable (error residual) x̃(t) = x(t)− x̄ , where x̄
denotes the fixed point (̇̄x = 0)

For a linear system, d
dt x̃(t) = Ax̃(t)

Consider the cost function J(x̃) = 1
2 x̃TSx̃ with S = DTD (symmetric,

positive definite)

If J̇(x̃) decreases monotonically in the vicinity of a fixed point (converging to
the unique value), it is said to be a Lyapunov function and the neighborhood
is said to be stable (for linear system, the system is stable); this definition
holds for more general functions than the one above

Then, if
∫∞

0
x̃T (t)Sx̃(t) dt is bounded, the linear(ized) system is said to be

exponentially asymptotically stable (for a linear system, globally stable)
Occurs if A has only negative real parts to all its eigenvalues.

Exponential convergence (stability):

||x̃(t)|| = ||exp(At)x̃(0)||
||x̃(t)|| ≤ k exp(−λi t) ||x̃(0)|| ,

where λi denotes the smallest (in absolute value) real part of an eigenvalue of
A



Lyapunov equations

A (differential) Lyapunov equation with Lyapunov function J(x) = 1
2 xTS(t)x

is of the form Ṡ(t) = S(t)A + ATS(t) + T , where T is positive definite;
solve with either S(0) or S(T ) given

Soln to diff Lyapunov equation converges to constant matrix S if the system
is asymp. stable. There, Ṡ = 0

An algebraic Lyapunov equation is derived from steady state condition Ṡ = 0;
it is the resulting Lyapunov equation with S = S(0) (for a backwards
integrated differential Lyapunov equation)

To see the origin of the (algebraic) Lyapunov equation, compute J̇(x(t)) for
a linear dynamical system:

J̇(x(t)) =
1

2
ẋTSx

= xTSẋ

= xTSAx

= xT (SA + ATS)x

where the last line follows since the scalar (xTSAx)T = xTATSx . For
J̇(x) < 0, must have SA + ATS negative definite



Lyapunov equations in optimal control

In either case, solve for S(0) or S(t); solve algebraic Lyapunov equation to
obtain steady-state (asymptotic) cost and steady-state feedback gain (latter
through a minor variation called Riccati eqn)

Time-invariant control strategies (i.e., u(t) = c , a constant) often chosen to
stabilize otherwise unstable dynamical systems; are based on steady-state gain

Optimal feedback control strategies u(x(t)), discussed below, are based on
appropriate choice of cost function, esp Lagrange term
L(x(t)) = 1

2 xT (t)Qx(t) + 1
2 uT (t)Ru(t), through choice of weighting

matrices Q and R

Prof. Raj Chakrabarti CHE 597: Introduction to Quantum Control Engineering May 14, 2014 290 / 334



Riccati equation

d

dt
φ(t) =

d

dt
[S(t)x(t)] = Ṡ(t)x(t) + S(t)ẋ(t)

= Ṡ(t)x(t) + S(t)(Ax(t) + Bu(t))

−Qx − ATφ(t) = Ṡ(t)x(t) + S(t)(Ax(t)− BR−1BTφ(t))

−Qx − ATS(t)x(t) = Ṡ(t)x(t) + S(t)(Ax(t)− BR−1BTS(t)x(t))

Ṡ(t)x(t) = (ATS(t)− S(t)A + S(t)BR−1BTS(t)− Q)x(t)

Ṡ(t) = −ATS(t)− S(t)A + BR−1BTS(t)− Q

For this system, the optimal feedback gain is time varying:
K (t) = R−1BTS(t); to obtain, must solve Riccati equation for S(t)
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Riccati equation (cont)

Riccati equation is propagated backwards in time (since S(T ) specified);
asymptotic limit is T − t →∞ (assume T →∞, then can set t = 0)

Formal solution possible, but requires solution of complete PMP-Hamiltonian
linear system, as in case of temperature control problem in HW 2; this is due
to coupling (presence) of x(t), φ(t) in both state, costate odes: revisit later

Solution S(0) (by backwards integration) to (differential) Riccati equation
with boundary condition lim

T→∞
S(t) is a constant. The corresponding

algebraic Riccati equation −ATS(0)− S(0)A + S(0)BR−1BTS(0)−Q = 0 is
solved for S(0). Note that with S(0)BR−1BTS(0)− Q positive-definite this
satisfies the conditions for a algebraic -Riccati- equation

The corresponding feedback gain is called the steady-state feedback gain;
linear systems are stable with it, as long as systems are controllable
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Observability Lyapunov equation

With only 1
2 xTQx term in J, Ṡ ode is called observability Lyapunov equation

d

dt
φ(t) =

d

dt
[S(t)x(t)] = Ṡ(t)x(t) + S(t)ẋ(t)

−ATφ(t)− Qx = Ṡ(t)x(t) + S(t)Ax(t)

−ATS(t)x(t)− Qx = Ṡ(t)x(t) + S(t)Ax(t)

Ṡ(t) = −S(t)A− ATS(t)− Q

φ(t) = S(t)x(t) again, but solution S(t) differs from LQR

Can be formally integrated in closed form analogously to x(t) for
time-invariant linear system

S(t) = exp[AT (T − t)]S(T ) exp[A(T − t)]+

+

∫ T

0

exp[AT (T − t)]Q exp[A(T − t)] dt



Controllability Lyapunov equation

With only uTRu term in J, the corresponding matrix ode is called
controllability Lyapunov equation

Controllability Lyapunov equation not expressed in terms of S , rather

Ṗ(t) = P(t)A + ATP(t) + BR−1BT

Formal solution similar:

P(t) = exp[At]P(0) exp[AT t] +

∫ T

0

exp[At]BR−1BT exp[AT t] dt

(unlike Ricatti and observability Lyapunov equations, propagated forward in
time)

By using P(0) = 0, solution for P(t) provides controllability Gramian: may
enable simple solution of linear, quadratic control cost problems

Next time will discuss stabilizability, which involves choosing a (feedback)
control strategy that causes the system to converge asymptotically to a fixed
point. In so doing we will discuss the relationship between the optimal
control time-domain and frequency domain control formulations (latter
typically not optimal)



Cost “to-go”

The cost to-go J(t) is the cost incurred over the trajectory portion [t,T ];
minimized over the remaining trajectory, irrespective of the prior trajectory, in
closed-loop feedback.

Being a Lyapunov function, J(t) must decrease monotonically over time (if
the system is stable)

Example: J(t) = 1
2 xT (t)S(t)x(t) for observability Lyapunov equation; check:

xT (T )S(T )x(T ) =

∫ T

0

d

dt
(xT (t)S(t)x(t)) dt + xT (0)S(0)x(0)

=

∫ T

0

ẋT (t)S(t)x(t) + xT (t)Ṡ(t)x(t) + xT (t)S(t)ẋ(t) dt + xT (0)S(0)x(0)

=

∫ T

0

xT (t)ATS(t)x(t) + xT (t)(−S(t)A− ATS(t)− Q)x(t)+

+ xT (t)S(t)Ax(t) dt + xT (0)S(0)x(0)

xT (t0)S(t0)x(t0) = xT (T )S(T )x(T ) +

∫ T

0

xT (t)Qx(t) dt



Cost “to-go” (cont)

J(t) = 1
2 xT (t)S(t)x(t) +

∫ T

0

∣∣∣∣R−1BTQx − u(t)
∣∣∣∣ dt for Lyapunov equation

with suboptimal feedback; 1
2 xT (t)S(t)x(t) dt for Riccati equation (optimal

feedback)

In both cases, J is a Lyapunov function; (since) S(t) is positive definite and
the Lyapunov condition is satisfied with positive-definite Q, J̇(t) is negative
definite for all t; allows us to assess asymptotic stability through cost
function alone
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Hamiltonian matrices

Our goal is to find steady-state optimal control ū(x(t)) such that system, if
unstable, is stabilized. Need to solve the PMP-Hamiltonian system.

Let

J =

[
0 −I
I 0

]
Note J−1 = JT = −J.

A Hamiltonian matrix H satisfies JHJ = HT

Any matrix of the form [
A B
C −AT

]
where B = BT , C = CT , is a Hamiltonian matrix (verify).
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Left/right eigenvalues and eigenvectors (of Hamiltonian
matrices)

Since Hamiltonian matrices are not symmetric, they can have complex
eigenvalues

They will also have left and right eigenvectors, each associated with the same
set of complex eigenvalues

A left eigenvector ω satisfies ωTH = αωT , where ω is a scalar

Let Hν = λν, where λ is the eigenvalue associated with eigenvector ν. Then

νTHT = λνT

νT JTHJT = λνT

−νT JTH = −λνT JT

(Jν)TH = −λ(Jν)T

Thus Jν is a left eigenvector of H with eigenvalue −λ (the eigenvalues thus
come in pairs). (note we thus only have to solve for the right eigenvectors
and automatically obtain the left).

Note that for a general linear system ẋ = Ax , A will also have left/right
eigenvectors and complex eigenvalues. The (open loop) system is
(asymptotically) stable if all eigenvalues have negative real parts.



Diagonalization of Hamiltonian matrices

Based on the above result, the 2N × 2N Hamiltonian matrix H, when
diagonalized, should look like

λ1

. . .

λN
−λ1

. . .

−λN


≡
[

M
−M

]

with λi ∈ C.

Recall the PMP-Hamiltonian system of 2N odes was[
ẋ(t)

φ̇(t)

]
= H

[
x(t)
φ(t)

]
.

Substitute the expression for H in terms of its eigenvalue matrix,
H = E H̃DT , where E denotes the matrix whose columns are right
eigenvectors, and D the matrix whose columns are left eigenvectors



Solving for steady-state gain and optimal feedback control

Now can solve this ode system with time-invariant Hamiltonian as[
x(t)
φ(t)

]
=

[
E11 E12

E21 E22

] [
exp(M)

exp(−M)

] [
DT

11 DT
21

DT
12 DT

22

] [
x(0)

Sx(0)

]
.

Since feedback controlled system stable,

DT
11x(0) + DT

21Sx(0) = 0

for all x(0) so that unstable modes do not contribute to the dynamics;
otherwise, x(t) will diverge as t →∞
Solving for S ,

S = (DT
21)−1DT

11

Thus the steady-state feedback gain is

K (∞) = R−1BTS = R−1BT (DT
21)−1DT

11

and the optimal steady-state control is
u(x(t)) = −K (∞)x(t) = −R−1BT (DT

21)−1DT
11x(t)



Stabilization of the closed loop system

Assuming the system is controllable (depends on A,B) and Q, R positive
definite, the closed loop system with steady-state optimal feedback is stable
irrespective of how many modes (eigenvectors) of A are unstable.

The associated steady-state closed loop matrix Acl = A− BK (∞) has N
stable eigenvalues, which happen to be the N stable eigenvalues
−λ1, · · · ,−λN of the Hamiltonian matrix H. The eigenvectors of
A− BK (∞) are the columns of the matrix E11.

Recall the definition of the open loop transfer function for a single input
(control), single output (observation) system:

y(s)

u(s)
= C (sI − A)−1B

where C is 1× N and B is N × 1



Stabilization of the closed loop system (cont)

The characteristic polynomial of the open loop matrix A is given by the
determinant |sI − A|; solve for the poles of the open loop transfer function

The feedback stabilized system, the poles vary as a function of the elements
of Q and R in the cost functional; the plot of the poles versus these
parameters is analogous to the root locus plot in frequency domain control,
where the poles are plotted versus constant gain parameters to design the
controller The closed loop characteristic polynomial is

|sI − A + BK (∞)|

whose roots all have negative real parts (reside on left half complex plane).

With time-varying state feedback, the poles change over time
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Dynamic programming formulation of optimal feedback
control

Except for linear feedback control, methods we have studied based on PMP
not suitable for feedback control since they provide “open loop” optimal
controls and trajectories based on known initial state x0; for linear systems,
our ansatz φ(t) = S(t)x(t) was essential for obtaining state feedback

PMP max/minimizes J(0)

Cost-to-go J(t) does not directly enter PMP formulation; useful to formulate
general nonlinear optimal feedback control law in terms of cost-to-go

Make J a function of x , u, t instead of just u as in original PMP formulation

Recall H = H(x , φ, u, t)

By adding x , t parameters to J, will see we can express Lagrange multiplier

φ(t) as partial derivative ∂J(x,t)
∂x ; note this is function of t like φ(t)



Hamilton-Jacobi-Bellman equation

Cost-to-go is now expressed as J(x , u, t) rather than J(u, t); let

J(x , u, t) = F (x(T ),T ) +

∫ T

t

L(x(t ′), u(t ′), t ′) dt ′

This is fn of x through xt
Then

dJ(x , t)

dt
= −L(x(t), u(t), t)

For any control and associated trajectory,

dJ(x , t)

dt
=
∂J(x , t)

∂t
+
∂J(x , t)

∂x

dx

dt

=
∂J(x , t)

∂t
+
∂J(x , t)

∂x
f (x , u, t) = −L(x(t), u(t), t)

∂J(x , t)

∂t
= −L(x(t), u(t), t))− ∂J(x , t)

∂x
f (x , u, t)

Hamiltonian now defined as
H(x , ∂J(x,t)

∂x , u, t) = L(x(t), u(t), t) + ∂J(x,t)
∂x f (x , u, t) instead of

H(x , φ, u, t) = L(x(t), u(t), t) + φT (t)f (x , u, t)

For optimal trajectory, H(x̄(t), ∂J(x,t)
∂x , ū(t), t) = min

u(t)
H(x(t), ∂J(x,t)

∂x , u(t), t)

as before



Hamilton-Jacobi-Bellman equation (cont)

So HJB equation is

∂J∗(x , t)

∂t
= −min

u(t)
H(x(t),

∂J∗(x , t)

∂x(t)
, u(t), t)

where J∗ denotes the optimal cost-to-go, which we will denote by simply J

Partial differential equation for J(x , t); propagated backward in time (since t
is lower limit of Lagrange integral) from J(x(T ),T ) = F (x(T ),T ) (at all pts
on surface of admissible final states x(T ))

Note equivalence between costate φ(t) and ∂J(x,t)
∂x

Solve for vector field of extremals ū(x , t) rather than a single optimal control
ū(t); vector field of extremals sometimes called optimal policy (since control
conditional on x)

Note x0 not explicitly specified
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Optimal control solution strategy using HJB equation

Follow these steps:
1 Set up Hamiltonian as for PMP but with ∂J(x,t)

dx
replacing φT (t)

2 Use PMP condition ∂H
∂u(t)

= 0 to express ū(t) in terms of ∂J(x,t)
dx

(recall

previously, we expressed in terms of φ(t))
3 Substitute ū(t) into Hamiltonian to obtain min

u(t)
H(x , u, ∂J(x,t)

dx
, t)

4 Write corresponding HJB equation and solve analytically or numerically for
J(x , t); if analytic solution exists, obtain feedback control law (vector field)

ū(x , t) from ū(x , t) = ∂J(x,t)
dx
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Comparing the Hamilton-Jacobi-Bellman equation with the
PMP

HJB replaces φT (t) with ∂J(x,t)
∂x

HJB provides ū in state feedback form directly

Solve a scalar pde with N + 1 independent variables x , t rather than 2N-dim
vector ode (PMP-Hamiltonian system) with 1 independent variable t (latter
is two-point boundary value problem)

Depending on solution method, PMP may not provide control in state
feedback form; e.g., with L(u(t)) = 1

2 uT (t)Ru(t), ū(t) = BR−1BTφ(t), not
a function of x since φ(t) not a fn of x

For certain integrable problems, e.g., LQR, PMP provides identical results to
HJB since it can provide optimal controls analytically in feedback form

HJB essential for optimal control of stochastic processes (which we study
later) since control must always be formulated in terms of state feedback
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HJB applied to linear quadratic regulator

Derived LQR feedback control law above using state, costate equations and
PMP

With minor variations can show HJB gives same result; start with

J(x , t) = 1
2 xTS(t)x(t) instead of φ(t) = S(t)x(t); then ∂J(x,t)

∂x(t) = S(t)x(t);

ū(x , t) = −BR−1BTS(t)x(t) as before

Now use HJB equation ∂J(x,t)
∂t = −min

u(t)
H(x(t), ∂J(x,t)

∂x(t) , u(t), t):

∂

∂t
[
1

2
xT (t)S(t)x(t)] = −1

2
xT (t)Qx(t)−

− 1

2
(BR−1BTS(t)x(t))TRBR−1BTS(t)x(t)

− [S(t)x(t)]T (A− BR−1BTS(t))x(t)

subject to J(x(T ),T ) = 1
2 xT (T )S(T )x(T )

Simplify and eliminate x(t) to obtain Riccati equation as above (note:
without using adjoint dynamical equation), with terminal boundary condition
S(T )

Can solve steady-state case analytically as above



Numerical methods for dynamic programming (discrete
time)

For nonlinear problems, typically no analytic solutions to HJB pdes. Can
discretize control, state, and time and apply the following backwards-time
algorithm to find the optimal feedback controls:

J∗(x , tk) = min
u(x,tk )

[L(x , u(x , tk), tk)∆t + J∗(x + ∆x , tk+1)]

with ∆x ≡ f (x , u(x , tk), tk)∆t and J(x(T ),T ) = F (x(T ),T )

1 For each tk , find J(x , tk) for all x , by computing J(u, x , tk) for all x
2 Choose J∗(x , tk) by choosing the u that gives the lowest cost for each x
3 For each (x , tk) pair you will then have associated optimal cost J∗(x , tk) to be

used in subsequent steps
4 Step backwards in time to tk−1 and repeat



Next time

Next time: how to optimally update a state estimate x̂(t) for a noisy
(stochastic) system based on observations made according to law
y(t) = Cx(t); will find “filtering” equations (Kalman-Bucy equations) are
dual to those for feedback control

Ultimately, will combine optimal state estimation and control for stochastic
feedback control
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Stochastic processes: from discrete to continuous time

In the stochastic process lectures we studied dynamics in discrete time:

xk+1 − xk = Axk + Dnk+1

where nk was called a N-variate white noise vector

Consider case with A = 0:

xk+1 − xk = Dnk+1;

the corresponding stochastic process x is called a Wiener process, Brownian
motion or a random walk

However for filtering we subsequently worked in continuous time, in order to
connect with our previous results on continuous time linear dynamical
systems; we wrote dx

dt = Ax(t) + Dn(t) For A = 0,

dx

dt
= Dn(t)



Stochastic differential equations (sdes)

The Brownian motion in continuous time is x(t). Rigorously, though, the
continuous time white noise n(t) does not exist, since x(t) can change
position by a finite amount instantaneously and hence is not differentiable

Stochastic differential equations are thus properly written dx(t) = Dn(t)dt or
more generally

dx(t) = Ax(t) dt + D n(t)dt = Ax(t) dt + D dω(t)

where dω(t) ∝
√

dt (the constant vector of proportionality is a standard
deviation vector)

The definition of dω(t) in terms of
√

dt rather than dt avoids the problem of
singularity in the derivative and avoids continuous time white noise; since√

dt is larger than dt, it is not infinitesimally small



Stochastic differential equations (cont)

Practically, the important point is that when one computes E[dω(t)dωT (t)],
one obtains

E[dω(t)dωT (t)] = N(t) dt

where N(t) is a covariance matrix (previously called Q but now because
mixing estimation and control Q will be used in OCT cost functional); note
the dt arises from two factors of dω(t); thus the variance of the increment of
Brownian motion is infinitesimally small, even though the increment itself
may not be

We can continue to use our old notation of continuous time white noise, as
long as we recognize:

E[n(t)dt nT (t)dt] = N(t) dt;

since we always integrate over time for our solutions, we will replace
stochastic differential equations with ordinary differential equations bearing
this rule of stochastic calculus in mind
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Stochastic optimal control objectives

For stochastic dynamics, can no longer aim to drive the system to a precise
final state

Goal: to control moments of a deterministic cost functional (cost-to-go): e.g.
its (unconditional) mean (expectation value) or its variance; we focus on
mean:

min
u(t)

E

[
F (x(T )) +

1

2

∫ T

0

xT (t)Q(t)x(t) + uT (t)Rc(t)u(t) dt

]

The dynamical constraint for optimization is now a stochastic differential
equation

Optimal control must always be expressed in feedback form ū(x(t)) or
ū(x̂(t))



Stochastic optimal control: with and without filtering

Two different frameworks:
1 Direct observation of the state - e.g. y = Cx observation law with rank C ≥ N

(here conditional covariance matrix Σ comes from dynamical noise alone)
2 Noisy observation of the state - if linear observer, z = Cx + w (example:

quantum observations through 〈Θ〉 = Tr(ρ(t)Θ), where ρ(t) is state)

Case 1: despite noisy dynamics, at any given time apply the optimal ū(x(t))
since we can observe the state directly

Case 2: requires a method of filtering to obtain x̂(t) for the feedback law
and then combine control with filtering for ū(x̂(t))



Stochastic HJB partial differential equation

Recall deterministic HJB equation:

∂J∗(x , t)

∂t
= −min

u(t)
H(x(t),

∂J∗(x , t)

∂x(t)
, u(t), t)

Consider case with direct measurement of state at each time x(t)

Stochastic HJB equation has an additional term that is a function of the
process noise covariance matrix DNDT

For stochastic systems, need to do second order expansion: will find second

order term will contribute to ∂J∗(x,t)
∂t



Stochastic HJB pde (cont)

dJ(x , t)

dt
=
∂J(x , t)

∂t
+ L(x(t), u(t), t) +

∂J(x , t)

∂x
(f + Dn(t))+

+
1

2
(f + Dn(t))T

∂2J(x , t)

∂x2
(f + Dn(t))dt

E

[
∂J(x , t)

∂t

]
= −E

[
L(x(t), u(t), t) +

∂J(x , t)

∂x
(f + Dn(t))−

− 1

2
(f + Dn(t))T

∂2J(x , t)

∂x2
(f + Dn(t))

]
∂J(x , t)

∂t
= −

[
L(x(t), u(t), t) +

∂J(x , t)

∂x
f (x , u)

]
−

− 1

2
E[Tr[

∂2J(x , t)

∂x2
Dn(t)nT (t)DT ]dt]



Stochastic HJB pde (cont)

∂J∗(x , t)

∂t
= −min

u(t)
H(x(t), u(t),

∂J∗(x , t)

∂x
, t)−

− 1

2
E[Tr[

∂2J∗(x , t)

∂x2
Dn(t)nT (t)DT ]]dt

= −min
u(t)

H(x(t), u(t),
∂J∗(x , t)

∂x
, t)−

1

2
Tr[

∂2J∗(x , t)

∂x2
DE[n(t)nT (t)]DT ]dt

∂J∗(x , t)

∂t
= −min

u(t)
H(x(t), u(t),

∂J∗(x , t)

∂x
, t)]−

1

2
Tr[

∂2J∗(x , t)

∂x2
DN(t)DT ]

since E[n(t)nT (t)]dt = N(t) for continuous-time white noise
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Linear-quadratic stochastic optimal control problems: no
filtering

As in deterministic case start with ansatz J(x , t) = 1
2 xT (t)S(t)x(t) but add

stochastic increment
∫ T

t
Tr[S(t ′)N(t ′)DT ] dt ′

Substitute into HJB equation:

∂J∗(x , t)

∂t
= −min

u(t)
H(x(t), u(t),

∂J∗(x , t)

∂x
, t) + Tr[S(t)DN(t)DT ]

∂J∗(x , t)

∂t
= −1

2
xT (t)Qx(t)−

− 1

2
(R−1BTS(t)x(t))TR(R−1BTS(t)x(t))

− [S(t)x(t)]T (A− BR−1BTS(t))x(t) + Tr[S(t)DN(t)DT ]

subject to J∗(x(T ),T ) = 1
2 xT (T )S(T )x(T )



Now derive Riccati equation:

1

2
[xT (t)Ṡ(t)x(t)] + Tr[S(t)DQ(t)DT ] =

− 1

2
xT (t)[ATS(t) + S(t)A + Q − S(t)BR−1BTS(t)]x(t)−

− Tr[S(t)DQ(t)DT ] + Tr[S(t)DN(t)DT ]

= −1

2
xT (t)[ATS(t) + S(t)A + Q − S(t)BR−1BTS(t)]x(t)+

+ Tr[S(t)DN(t)DT ]

Ṡ(t) = −ATS(t)− S(t)A− Q + S(t)BR−1BTS(t)

Time-varying state-feedback control law:

ū(x(t)) = −R−1BTS(t)x(t)
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Filtrations

When the state must be estimated based on noisy measurements, optimal
decisions/controls must be based on the information set at any given time t:

I(t0, t) = (z(t0, t), u(t0, t))

, i.e. conditional (conditioned) on all past observations; this is also referred
to as a filtration

Filters (e.g. Kalman filter) are used to translate the filtration I(t0, t) into
derived state and covariance estimate histories; these histories constitute the
derived information set ID(t0, t) = (x̂(t0, t),Σ(t0, t)) which is used by the
controller (note this is dependent on the type of estimator/filter used); we
will use the notations I and ID interchangeably

For a Markovian stochastic process, I(t0, t) = I(t) = (x̂(t),Σ(t)) since the
future evolution depends explicitly only on the the current state and
covariance matrix



Linear stochastic optimal control problems with filtering

Linear stochastic control problem analogous to LQR, with process as well as
measurement uncertainty, is called linear quadratic gaussian regulator (LQG
regulator)

Write expected cost function given incomplete information set (filtration):

E

[
xT (T )S(T )x(T ) +

∫ T

0

xT (t)Q(t)x(t) + uT (t)R(t)u(t) dt

]
=

= E

{
E
[
xT (T )S(T )x(T )|I(t)

]
+

+

∫ T

0

E
[
xT (t)Q(t)x(t) + uT (t)R(t)u(t)|I(t)

]
dt

}
= E

{
Tr[S(T )x(T )xT (T )|I(T )] +

∫ T

0

Tr[Q(t)x(t)xT (t)|I(t)]+

Tr[R(t)u(t)uT (t)] dt

}



Linear stochastic optimal control problems with filtering
(cont)

Note that E[x(t)xT (t)|I(t)] appears in the cost functional; rewrite this in
terms of

Σ = E[(x(t)− x̂(t))(x(t)− x̂(t))T |I(t)]

= E[x(t)xT (t)|I(t)]− 2E[x(t)x̂T (t)|I(t)] + E[x̂(t)x̂(t)|I(t)])

= E[x(t)xT (t)|I(t)]− E[x̂(t)x̂(t)|I(t)]

So E[x(t)xT (t)|I(t)] = Σ(t) + x̂(t)x̂(t)
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Thus

2E[J] = E

{
Tr[S(T )x̂(T )x̂T (T )] + Tr[S(T )Σ(T )]+

+

∫ T

0

Tr[Q(t)x̂(t)x̂T (t)] + Tr[R(t)u(t)uT (t)] + Tr[Q(t)Σ(t)] dt

}
= E

{
Tr[S(T )x̂(T )x̂T (T )] +

∫ T

0

Tr[Q(t)x̂(t)x̂T (t)]+

Tr[R(t)u(t)uT (t)] dt

}
+ E

{
Tr[S(T )Σ(T )] +

∫ T

0

Tr[Q(t)Σ(t)] dt

}
= JCE + JS

JCE is called “certainty-equivalent” cost functional; note it is same as
stochastic cost functional with but with x replaced by x̂

For the control systems we are studying, control does not affect JS - can
formulate optimization problem based only on minimization of JCE (however,
in certain applications Σ(t) can be controlled)

Covariance matrix Σ includes contributions from both estimation error and
noisy dynamics

Prof. Raj Chakrabarti CHE 597: Introduction to Quantum Control Engineering May 14, 2014 325 / 334



Certainty-equivalence principle for linear Gaussian systems

Recall dynamical constraint for deterministic LQR controller was

dx(t)

dt
= Ax(t) + Bu(t),

whereas dynamical constraint for stochastic system with direct state
observation was

dx(t)

dt
= Ax(t) + Bu(t) + Dn(t)

Dynamical constraint for LQG controller is

dx̂(t)

dt
= Ax̂(t) + Bu(t) + Ke(t)(z(t)− C (t)x̂(t));

control problem is min
u(t)

JCE subject to this constraint

Note that in expectation, the term Ke(t)(z(t)− C (t)x̂(t)) is distributed
normally with mean zero, just like Dn(t) in stochastic control with direct
state observation; thus Riccati equation is identical and doesn’t depend on
x̂(t) or Σ(t)
The feedback controller Riccati equation is (propagated backward in time
from S(T )):

dS(t)

dt
= −ATS − SA− Q + S(t)BKc(t)

(expressed in terms of controller gain Kc(t) = R−1
c BTS(t) The gain Kc(t)

can be computed offline since it does not depend on any observations
Riccati equation for filter (covariance matrix updates) is identical to that
previously derived (recall propagated forward in time):

dΣ(t)

dt
= AΣ + ΣAT + DNDT − Σ(t)CTKe(t)

(expressed in terms of estimator gain Ke(t) = R−1
e C Σ(t)).



Certainty-equivalence principle for linear Gaussian systems
(cont)

Certainty-equivalence means that the control problem can be solved as if the
state x̂(t) were directly observed

The optimal feedback control is ū(x̂(t)) = R−1BTS(t)x̂(t)

The state estimate x̂(t) is continuously updated through the Kalman filter
Riccati equation

Implementation steps:
1 Solve controller Riccati equation by backwards propagation from S(T )

(appears in cost functional)
2 Propagate dx̂(t)

dt
= Ax̂(t) + Bu(x̂(t)) + Ke(t)(z(t)− C(t)x̂(t)) forward from

x̂(0), simultaneously with propagation of filter Riccati equation forward from
Σ(0)
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Solving nonlinear stochastic optimal control problems with
noisy measurements

HJB solution method presented above assumes state can be observed directly
without error; this allows us to replace E[J(x(t), t)] with J(x(t), t) and
similarly E[x(t)] with its known values at all times

For nonlinear systems with measurement error, E[J(x(T ),T )] = E[F (x(T ))]
not known with certainty and depends on measurements made over all time
[0,T ]

Thus filter, which is integrated forward in time, is coupled, and both cannot
be solved simultaneously

For linear systems, decoupling of estimator from controller occurs; for
nonlinear systems, generally not possible and error is incurred by assuming
information set up to time t is sufficiently similar to information set over all
time

Filter determines the filtration forward in time, while the controller (HJB
solution) determines the optimal state-dependent feedback laws backward in
time



Solving nonlinear stochastic optimal control problems with
noisy measurements

Decoupling for linear systems occurs because Σ̇(t) Riccati equation is
unaffected by control u(t); thus controller Riccati equation can be solved
first, backwards from S(T ), while filter Ricatti equation (covariance update)

can be solved separately; note Σ(t) is required for integration of dx̂(t)
dt but not

vice versa

LQG derivation relies on equivalence between dynamical constraint including
filter and linear Markovian sde (like that used in LQR derivation); in
expectation the noise (innovation) term does not appear hence optimal
ū(x̂(t)) law is identical to that for LQR and controller gain can be computed
offline

For nonlinear systems u(t) can affect Σ(t)

Even if we ignore this we still need to solve HJB equation



Neighboring optimal (perturbative) feedback control

We have seen that solving for optimal feedback controls for nonlinear
(stochastic) systems is difficult; require HJB pde solution for field of
extremals; but these are most common circumstance

Neighboring optimal methods are based on linearization of system around
deterministic trajectory - can apply linear estimation and control
methodology locally

Preliminary steps:
1 Solve for optimal controls in absence of measurements or noise for nonlinear

system (need not be expressed in feedback form; use PMP)
2 Now linearize nonlinear system around the reference trajectory:

A(t) =
∂f

∂x
[x̂r (t), ur (t), t],

B(t) =
∂f

∂u
[x̂r (t), ur (t), t]

Note this means to substitute the optimal state and control trajectories
x̂r (t), ur (t) in after analytic differentiations of nonlinear vector functions f ;
although the resulting expressions A(t),B(t) will not be analytic, they can be
used in numerical integration of the corresponding Riccati equations

3 Define deviation variables ∆x̂(t) = x̂r (t)− x̂(t), ∆u(t) = ur (t)− u(t)



Neighboring optimal feedback control methods (cont)

Filtering and control steps:
1 Solve the corresponding linear feedback control problem by integrating Riccati

equations for controller and filter and updating deviation ∆x̂(t) based on
observations. Cost functional:

F (∆x̂(T )) +
1

2

∫ T

0

∆x̂T (t)Q∆x̂(t) + ∆uT (t)R∆u(t) dt

2 Optimization of this cost functional subject to the linearized dynamical
constraint

∆ẋ(t) = A(t)∆x̂(t) + B(t)∆u(t) + Ke(t)[z(t)− C(t)∆x̂(t)]

provides the Riccati equation above for LQG
3 Solve the corresponding linear filtering problem by integrating the filter Riccati

equation:

Σ̇(t) = A(t)Σ(t) + Σ(t)AT (t) + DQDT − Σ(t)CTR−1(t)CΣ(t)

where the covariance matrix is now defined by
Σ(t) = E[(∆x(t)−∆x̂(t))(∆x(t)−∆x̂(t))T ]

4 Update the state estimates in real-time in response to observations z(t)
according to above dynamical equation (here we have assumed a linear
observation law); at each time apply the feedback control
∆u(∆x̂(t)) = −R−1BTS(t)∆x̂(t)



Asymptotic stability of the Kalman filter

Recall the quadratic cost used for derivation of the Kalman filter was
J = 1

2 (z(t)− C x̂(t))TR−1(z(t)− C x̂(t))

The appropriate Lyapunov function for assessment of stability of the Kalman
filter is J(t) = 1

2 (x(t)− x̂(t))TΣ−1(t)(x(t)− x̂(t))

The corresponding algebraic Riccati equation can be derived from the Riccati
equation for Σ: (simply left/right multiply by Σ−1):

Σ̇−1(t) = Σ−1(t)A + ATΣ−1(t) + Σ−1(t)DNDTΣ−1(t)− CTR−1C

Σ−1(t) plays the role of S(t) in the feedback control Riccati equation

Note use of Σ−1 in the Lyapunov function parallels use of R−1 in objective
function



Asymptotic stability of the Kalman filter (cont)

Note this Riccati equation is a function of A,C ; the condition for stability is
observability of the system

Letting ε(t) ≡ x(t)− x̂(t), the time-derivative of the Lyapunov function is

J̇(ε(t)) = −ε(t)T [Σ−1(0)DNDTΣ−1(0) + CTR−1C ]ε(t),

which is negative definite

Thus the estimation error decays to zero as the time over which the
measurements are made approaches infinity.

By extending our results on stability of controllable linear feedback controllers
and observable linear filters, the deviation of x(t) and x(t)− x̂(t) from zero
decay asymptotically for the LQG

Since estimation dynamics governed by d
dt ε(t) = (A− Ke(∞)C )ε (in

steady-state case, omitting noise terms; check), stability can be checked by
looking at eigenvalues of A− Ke(∞)C
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Equilibrium points of (linearized) dynamical systems

Static equilbria: x(t) does not change with time; i.e., dx
dt = 0

For constant control u∗, the equilibrium point is where x∗ = A−1Bu∗

More generally can have quasistatic equilibria where we subdivide x(t) into

x1(t) and x2(t), and only dx1(t)
dt = 0 at the equilibrium; this occurs if A is

singular

Note that in general, due to insensitivity of the location of the origin, we
define the origin to be the zero state vector in dx

dt = Ax + Bu, but can
generalize to x → x + v ; simply shifts the equilibrium point by v
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